Spaces:
Runtime error
Runtime error
| # Copyright 2021 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import numpy as np | |
| from transformers import AlbertConfig, is_flax_available | |
| from transformers.testing_utils import require_flax, slow | |
| from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask | |
| if is_flax_available(): | |
| import jax.numpy as jnp | |
| from transformers.models.albert.modeling_flax_albert import ( | |
| FlaxAlbertForMaskedLM, | |
| FlaxAlbertForMultipleChoice, | |
| FlaxAlbertForPreTraining, | |
| FlaxAlbertForQuestionAnswering, | |
| FlaxAlbertForSequenceClassification, | |
| FlaxAlbertForTokenClassification, | |
| FlaxAlbertModel, | |
| ) | |
| class FlaxAlbertModelTester(unittest.TestCase): | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| seq_length=7, | |
| is_training=True, | |
| use_attention_mask=True, | |
| use_token_type_ids=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| num_choices=4, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_attention_mask = use_attention_mask | |
| self.use_token_type_ids = use_token_type_ids | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.num_choices = num_choices | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| attention_mask = None | |
| if self.use_attention_mask: | |
| attention_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| token_type_ids = None | |
| if self.use_token_type_ids: | |
| token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
| config = AlbertConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| is_decoder=False, | |
| initializer_range=self.initializer_range, | |
| ) | |
| return config, input_ids, token_type_ids, attention_mask | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, token_type_ids, attention_mask = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} | |
| return config, inputs_dict | |
| class FlaxAlbertModelTest(FlaxModelTesterMixin, unittest.TestCase): | |
| all_model_classes = ( | |
| ( | |
| FlaxAlbertModel, | |
| FlaxAlbertForPreTraining, | |
| FlaxAlbertForMaskedLM, | |
| FlaxAlbertForMultipleChoice, | |
| FlaxAlbertForQuestionAnswering, | |
| FlaxAlbertForSequenceClassification, | |
| FlaxAlbertForTokenClassification, | |
| FlaxAlbertForQuestionAnswering, | |
| ) | |
| if is_flax_available() | |
| else () | |
| ) | |
| def setUp(self): | |
| self.model_tester = FlaxAlbertModelTester(self) | |
| def test_model_from_pretrained(self): | |
| for model_class_name in self.all_model_classes: | |
| model = model_class_name.from_pretrained("albert-base-v2") | |
| outputs = model(np.ones((1, 1))) | |
| self.assertIsNotNone(outputs) | |
| class FlaxAlbertModelIntegrationTest(unittest.TestCase): | |
| def test_inference_no_head_absolute_embedding(self): | |
| model = FlaxAlbertModel.from_pretrained("albert-base-v2") | |
| input_ids = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) | |
| attention_mask = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) | |
| output = model(input_ids, attention_mask=attention_mask)[0] | |
| expected_shape = (1, 11, 768) | |
| self.assertEqual(output.shape, expected_shape) | |
| expected_slice = np.array( | |
| [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] | |
| ) | |
| self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) | |