Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| from transformers import BertConfig, is_tf_available | |
| from transformers.models.auto import get_values | |
| from transformers.testing_utils import require_tf, slow | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin | |
| if is_tf_available(): | |
| import tensorflow as tf | |
| from transformers import TF_MODEL_FOR_PRETRAINING_MAPPING | |
| from transformers.models.bert.modeling_tf_bert import ( | |
| TFBertForMaskedLM, | |
| TFBertForMultipleChoice, | |
| TFBertForNextSentencePrediction, | |
| TFBertForPreTraining, | |
| TFBertForQuestionAnswering, | |
| TFBertForSequenceClassification, | |
| TFBertForTokenClassification, | |
| TFBertLMHeadModel, | |
| TFBertModel, | |
| ) | |
| class TFBertModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_token_type_ids=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| num_choices=4, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = 13 | |
| self.seq_length = 7 | |
| self.is_training = True | |
| self.use_input_mask = True | |
| self.use_token_type_ids = True | |
| self.use_labels = True | |
| self.vocab_size = 99 | |
| self.hidden_size = 32 | |
| self.num_hidden_layers = 5 | |
| self.num_attention_heads = 4 | |
| self.intermediate_size = 37 | |
| self.hidden_act = "gelu" | |
| self.hidden_dropout_prob = 0.1 | |
| self.attention_probs_dropout_prob = 0.1 | |
| self.max_position_embeddings = 512 | |
| self.type_vocab_size = 16 | |
| self.type_sequence_label_size = 2 | |
| self.initializer_range = 0.02 | |
| self.num_labels = 3 | |
| self.num_choices = 4 | |
| self.scope = None | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| token_type_ids = None | |
| if self.use_token_type_ids: | |
| token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
| sequence_labels = None | |
| token_labels = None | |
| choice_labels = None | |
| if self.use_labels: | |
| sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
| choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
| config = BertConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| initializer_range=self.initializer_range, | |
| ) | |
| return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| def prepare_config_and_inputs_for_decoder(self): | |
| ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ) = self.prepare_config_and_inputs() | |
| config.is_decoder = True | |
| encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
| encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
| return ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ) | |
| def create_and_check_model( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = TFBertModel(config=config) | |
| inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
| result = model(inputs) | |
| inputs = [input_ids, input_mask] | |
| result = model(inputs) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_causal_lm_base_model( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.is_decoder = True | |
| model = TFBertModel(config=config) | |
| inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
| result = model(inputs) | |
| inputs = [input_ids, input_mask] | |
| result = model(inputs) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_model_as_decoder( | |
| self, | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ): | |
| config.add_cross_attention = True | |
| model = TFBertModel(config=config) | |
| inputs = { | |
| "input_ids": input_ids, | |
| "attention_mask": input_mask, | |
| "token_type_ids": token_type_ids, | |
| "encoder_hidden_states": encoder_hidden_states, | |
| "encoder_attention_mask": encoder_attention_mask, | |
| } | |
| result = model(inputs) | |
| inputs = [input_ids, input_mask] | |
| result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) | |
| # Also check the case where encoder outputs are not passed | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_causal_lm_model( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.is_decoder = True | |
| model = TFBertLMHeadModel(config=config) | |
| inputs = { | |
| "input_ids": input_ids, | |
| "attention_mask": input_mask, | |
| "token_type_ids": token_type_ids, | |
| } | |
| prediction_scores = model(inputs)["logits"] | |
| self.parent.assertListEqual( | |
| list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] | |
| ) | |
| def create_and_check_causal_lm_model_as_decoder( | |
| self, | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ): | |
| config.add_cross_attention = True | |
| model = TFBertLMHeadModel(config=config) | |
| inputs = { | |
| "input_ids": input_ids, | |
| "attention_mask": input_mask, | |
| "token_type_ids": token_type_ids, | |
| "encoder_hidden_states": encoder_hidden_states, | |
| "encoder_attention_mask": encoder_attention_mask, | |
| } | |
| result = model(inputs) | |
| inputs = [input_ids, input_mask] | |
| result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) | |
| prediction_scores = result["logits"] | |
| self.parent.assertListEqual( | |
| list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] | |
| ) | |
| def create_and_check_causal_lm_model_past( | |
| self, | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ): | |
| config.is_decoder = True | |
| model = TFBertLMHeadModel(config=config) | |
| # first forward pass | |
| outputs = model(input_ids, use_cache=True) | |
| outputs_use_cache_conf = model(input_ids) | |
| outputs_no_past = model(input_ids, use_cache=False) | |
| self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
| self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
| past_key_values = outputs.past_key_values | |
| # create hypothetical next token and extent to next_input_ids | |
| next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
| # append to next input_ids and attn_mask | |
| next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
| output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0] | |
| output_from_past = model( | |
| next_tokens, past_key_values=past_key_values, output_hidden_states=True | |
| ).hidden_states[0] | |
| # select random slice | |
| random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) | |
| output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] | |
| output_from_past_slice = output_from_past[:, 0, random_slice_idx] | |
| # test that outputs are equal for slice | |
| tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) | |
| def create_and_check_causal_lm_model_past_with_attn_mask( | |
| self, | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ): | |
| config.is_decoder = True | |
| model = TFBertLMHeadModel(config=config) | |
| # create attention mask | |
| half_seq_length = self.seq_length // 2 | |
| attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) | |
| attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) | |
| attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) | |
| # first forward pass | |
| outputs = model(input_ids, attention_mask=attn_mask, use_cache=True) | |
| # create hypothetical next token and extent to next_input_ids | |
| next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
| past_key_values = outputs.past_key_values | |
| # change a random masked slice from input_ids | |
| random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 | |
| random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) | |
| vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) | |
| condition = tf.transpose( | |
| tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) | |
| ) | |
| input_ids = tf.where(condition, random_other_next_tokens, input_ids) | |
| # append to next input_ids and | |
| next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
| attn_mask = tf.concat( | |
| [attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)], | |
| axis=1, | |
| ) | |
| output_from_no_past = model( | |
| next_input_ids, | |
| attention_mask=attn_mask, | |
| output_hidden_states=True, | |
| ).hidden_states[0] | |
| output_from_past = model( | |
| next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True | |
| ).hidden_states[0] | |
| # select random slice | |
| random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) | |
| output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] | |
| output_from_past_slice = output_from_past[:, 0, random_slice_idx] | |
| # test that outputs are equal for slice | |
| tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) | |
| def create_and_check_causal_lm_model_past_large_inputs( | |
| self, | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ): | |
| config.is_decoder = True | |
| model = TFBertLMHeadModel(config=config) | |
| input_ids = input_ids[:1, :] | |
| input_mask = input_mask[:1, :] | |
| self.batch_size = 1 | |
| # first forward pass | |
| outputs = model(input_ids, attention_mask=input_mask, use_cache=True) | |
| past_key_values = outputs.past_key_values | |
| # create hypothetical next token and extent to next_input_ids | |
| next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
| next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
| # append to next input_ids and | |
| next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
| next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) | |
| output_from_no_past = model( | |
| next_input_ids, | |
| attention_mask=next_attention_mask, | |
| output_hidden_states=True, | |
| ).hidden_states[0] | |
| output_from_past = model( | |
| next_tokens, | |
| attention_mask=next_attention_mask, | |
| past_key_values=past_key_values, | |
| output_hidden_states=True, | |
| ).hidden_states[0] | |
| self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) | |
| # select random slice | |
| random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) | |
| output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] | |
| output_from_past_slice = output_from_past[:, :, random_slice_idx] | |
| # test that outputs are equal for slice | |
| tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) | |
| def create_and_check_decoder_model_past_large_inputs( | |
| self, | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ): | |
| config.add_cross_attention = True | |
| model = TFBertLMHeadModel(config=config) | |
| input_ids = input_ids[:1, :] | |
| input_mask = input_mask[:1, :] | |
| encoder_hidden_states = encoder_hidden_states[:1, :, :] | |
| encoder_attention_mask = encoder_attention_mask[:1, :] | |
| self.batch_size = 1 | |
| # first forward pass | |
| outputs = model( | |
| input_ids, | |
| attention_mask=input_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| use_cache=True, | |
| ) | |
| past_key_values = outputs.past_key_values | |
| # create hypothetical next token and extent to next_input_ids | |
| next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
| next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
| # append to next input_ids and | |
| next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
| next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) | |
| output_from_no_past = model( | |
| next_input_ids, | |
| attention_mask=next_attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| output_hidden_states=True, | |
| ).hidden_states[0] | |
| output_from_past = model( | |
| next_tokens, | |
| attention_mask=next_attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| past_key_values=past_key_values, | |
| output_hidden_states=True, | |
| ).hidden_states[0] | |
| self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) | |
| # select random slice | |
| random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) | |
| output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] | |
| output_from_past_slice = output_from_past[:, :, random_slice_idx] | |
| # test that outputs are equal for slice | |
| tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) | |
| def create_and_check_for_masked_lm( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = TFBertForMaskedLM(config=config) | |
| inputs = { | |
| "input_ids": input_ids, | |
| "attention_mask": input_mask, | |
| "token_type_ids": token_type_ids, | |
| } | |
| result = model(inputs) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
| def create_and_check_for_next_sequence_prediction( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = TFBertForNextSentencePrediction(config=config) | |
| inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
| result = model(inputs) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) | |
| def create_and_check_for_pretraining( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = TFBertForPreTraining(config=config) | |
| inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
| result = model(inputs) | |
| self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
| self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) | |
| def create_and_check_for_sequence_classification( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = TFBertForSequenceClassification(config=config) | |
| inputs = { | |
| "input_ids": input_ids, | |
| "attention_mask": input_mask, | |
| "token_type_ids": token_type_ids, | |
| } | |
| result = model(inputs) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| def create_and_check_for_multiple_choice( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_choices = self.num_choices | |
| model = TFBertForMultipleChoice(config=config) | |
| multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) | |
| multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) | |
| multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) | |
| inputs = { | |
| "input_ids": multiple_choice_inputs_ids, | |
| "attention_mask": multiple_choice_input_mask, | |
| "token_type_ids": multiple_choice_token_type_ids, | |
| } | |
| result = model(inputs) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
| def create_and_check_for_token_classification( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = TFBertForTokenClassification(config=config) | |
| inputs = { | |
| "input_ids": input_ids, | |
| "attention_mask": input_mask, | |
| "token_type_ids": token_type_ids, | |
| } | |
| result = model(inputs) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
| def create_and_check_for_question_answering( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = TFBertForQuestionAnswering(config=config) | |
| inputs = { | |
| "input_ids": input_ids, | |
| "attention_mask": input_mask, | |
| "token_type_ids": token_type_ids, | |
| } | |
| result = model(inputs) | |
| self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
| self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ) = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
| return config, inputs_dict | |
| class TFBertModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = ( | |
| ( | |
| TFBertModel, | |
| TFBertForMaskedLM, | |
| TFBertLMHeadModel, | |
| TFBertForNextSentencePrediction, | |
| TFBertForPreTraining, | |
| TFBertForQuestionAnswering, | |
| TFBertForSequenceClassification, | |
| TFBertForTokenClassification, | |
| TFBertForMultipleChoice, | |
| ) | |
| if is_tf_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = ( | |
| { | |
| "feature-extraction": TFBertModel, | |
| "fill-mask": TFBertForMaskedLM, | |
| "question-answering": TFBertForQuestionAnswering, | |
| "text-classification": TFBertForSequenceClassification, | |
| "text-generation": TFBertLMHeadModel, | |
| "token-classification": TFBertForTokenClassification, | |
| "zero-shot": TFBertForSequenceClassification, | |
| } | |
| if is_tf_available() | |
| else {} | |
| ) | |
| test_head_masking = False | |
| test_onnx = True | |
| onnx_min_opset = 10 | |
| # special case for ForPreTraining model | |
| def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
| inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
| if return_labels: | |
| if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING): | |
| inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) | |
| return inputs_dict | |
| def setUp(self): | |
| self.model_tester = TFBertModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| """Test the base model""" | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_causal_lm_base_model(self): | |
| """Test the base model of the causal LM model | |
| is_deocder=True, no cross_attention, no encoder outputs | |
| """ | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs) | |
| def test_model_as_decoder(self): | |
| """Test the base model as a decoder (of an encoder-decoder architecture) | |
| is_deocder=True + cross_attention + pass encoder outputs | |
| """ | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
| self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) | |
| def test_for_masked_lm(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
| def test_for_causal_lm(self): | |
| """Test the causal LM model""" | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_causal_lm_model(*config_and_inputs) | |
| def test_causal_lm_model_as_decoder(self): | |
| """Test the causal LM model as a decoder""" | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
| self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs) | |
| def test_causal_lm_model_past(self): | |
| """Test causal LM model with `past_key_values`""" | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs) | |
| def test_causal_lm_model_past_with_attn_mask(self): | |
| """Test the causal LM model with `past_key_values` and `attention_mask`""" | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs) | |
| def test_causal_lm_model_past_with_large_inputs(self): | |
| """Test the causal LM model with `past_key_values` and a longer decoder sequence length""" | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs) | |
| def test_decoder_model_past_with_large_inputs(self): | |
| """Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention""" | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
| self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
| def test_for_multiple_choice(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
| def test_for_next_sequence_prediction(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs) | |
| def test_for_pretraining(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_pretraining(*config_and_inputs) | |
| def test_for_question_answering(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
| def test_for_sequence_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
| def test_for_token_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
| def test_model_from_pretrained(self): | |
| model = TFBertModel.from_pretrained("jplu/tiny-tf-bert-random") | |
| self.assertIsNotNone(model) | |
| def test_model_common_attributes(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| list_lm_models = [TFBertForMaskedLM, TFBertForPreTraining, TFBertLMHeadModel] | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) | |
| if model_class in list_lm_models: | |
| x = model.get_output_embeddings() | |
| assert isinstance(x, tf.keras.layers.Layer) | |
| name = model.get_bias() | |
| assert isinstance(name, dict) | |
| for k, v in name.items(): | |
| assert isinstance(v, tf.Variable) | |
| else: | |
| x = model.get_output_embeddings() | |
| assert x is None | |
| name = model.get_bias() | |
| assert name is None | |
| def test_custom_load_tf_weights(self): | |
| model, output_loading_info = TFBertForTokenClassification.from_pretrained( | |
| "jplu/tiny-tf-bert-random", output_loading_info=True | |
| ) | |
| self.assertEqual(sorted(output_loading_info["unexpected_keys"]), []) | |
| for layer in output_loading_info["missing_keys"]: | |
| self.assertTrue(layer.split("_")[0] in ["dropout", "classifier"]) | |
| # TODO (Joao): fix me | |
| def test_onnx_compliancy(self): | |
| pass | |
| class TFBertModelIntegrationTest(unittest.TestCase): | |
| def test_inference_masked_lm(self): | |
| model = TFBertForPreTraining.from_pretrained("lysandre/tiny-bert-random") | |
| input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) | |
| output = model(input_ids)[0] | |
| expected_shape = [1, 6, 32000] | |
| self.assertEqual(output.shape, expected_shape) | |
| print(output[:, :3, :3]) | |
| expected_slice = tf.constant( | |
| [ | |
| [ | |
| [-0.05243197, -0.04498899, 0.05512108], | |
| [-0.07444685, -0.01064632, 0.04352357], | |
| [-0.05020351, 0.05530146, 0.00700043], | |
| ] | |
| ] | |
| ) | |
| tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4) | |