Spaces:
Runtime error
Runtime error
| import inspect | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| import transformers | |
| from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig, is_flax_available, is_torch_available | |
| from transformers.testing_utils import is_pt_flax_cross_test, require_flax, slow | |
| from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
| if is_flax_available(): | |
| import jax | |
| import jax.numpy as jnp | |
| from transformers.modeling_flax_pytorch_utils import ( | |
| convert_pytorch_state_dict_to_flax, | |
| load_flax_weights_in_pytorch_model, | |
| ) | |
| from transformers.models.clip.modeling_flax_clip import FlaxCLIPModel, FlaxCLIPTextModel, FlaxCLIPVisionModel | |
| if is_torch_available(): | |
| import torch | |
| class FlaxCLIPVisionModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=12, | |
| image_size=30, | |
| patch_size=2, | |
| num_channels=3, | |
| is_training=True, | |
| hidden_size=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| dropout=0.1, | |
| attention_dropout=0.1, | |
| initializer_range=0.02, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.num_channels = num_channels | |
| self.is_training = is_training | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| config = CLIPVisionConfig( | |
| image_size=self.image_size, | |
| patch_size=self.patch_size, | |
| num_channels=self.num_channels, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| dropout=self.dropout, | |
| attention_dropout=self.attention_dropout, | |
| initializer_range=self.initializer_range, | |
| ) | |
| return config, pixel_values | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values} | |
| return config, inputs_dict | |
| class FlaxCLIPVisionModelTest(FlaxModelTesterMixin, unittest.TestCase): | |
| """ | |
| Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds, | |
| attention_mask and seq_length. | |
| """ | |
| all_model_classes = (FlaxCLIPVisionModel,) if is_flax_available() else () | |
| def setUp(self): | |
| self.model_tester = FlaxCLIPVisionModelTester(self) | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.__call__) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_jit_compilation(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| with self.subTest(model_class.__name__): | |
| prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
| model = model_class(config) | |
| def model_jitted(pixel_values, **kwargs): | |
| return model(pixel_values=pixel_values, **kwargs).to_tuple() | |
| with self.subTest("JIT Enabled"): | |
| jitted_outputs = model_jitted(**prepared_inputs_dict) | |
| with self.subTest("JIT Disabled"): | |
| with jax.disable_jit(): | |
| outputs = model_jitted(**prepared_inputs_dict) | |
| self.assertEqual(len(outputs), len(jitted_outputs)) | |
| for jitted_output, output in zip(jitted_outputs, outputs): | |
| self.assertEqual(jitted_output.shape, output.shape) | |
| def test_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states = outputs.hidden_states | |
| self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1) | |
| # CLIP has a different seq_length | |
| image_size = (self.model_tester.image_size, self.model_tester.image_size) | |
| patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) | |
| num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
| seq_length = num_patches + 1 | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-2:]), | |
| [seq_length, self.model_tester.hidden_size], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| def test_attention_outputs(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| # in CLIP, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) | |
| image_size = (self.model_tester.image_size, self.model_tester.image_size) | |
| patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) | |
| num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
| seq_length = num_patches + 1 | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = False | |
| model = model_class(config) | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| # check that output_attentions also work using config | |
| del inputs_dict["output_attentions"] | |
| config.output_attentions = True | |
| model = model_class(config) | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, seq_length, seq_length], | |
| ) | |
| out_len = len(outputs) | |
| # Check attention is always last and order is fine | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = True | |
| model = model_class(config) | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| added_hidden_states = 1 | |
| self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
| self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
| self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(self_attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, seq_length, seq_length], | |
| ) | |
| # FlaxCLIPVisionModel does not have any base model | |
| def test_save_load_from_base(self): | |
| pass | |
| # FlaxCLIPVisionModel does not have any base model | |
| def test_save_load_to_base(self): | |
| pass | |
| # FlaxCLIPVisionModel does not have any base model | |
| def test_save_load_from_base_pt(self): | |
| pass | |
| # FlaxCLIPVisionModel does not have any base model | |
| def test_save_load_to_base_pt(self): | |
| pass | |
| # FlaxCLIPVisionModel does not have any base model | |
| def test_save_load_bf16_to_base_pt(self): | |
| pass | |
| def test_model_from_pretrained(self): | |
| for model_class_name in self.all_model_classes: | |
| model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) | |
| outputs = model(np.ones((1, 3, 224, 224))) | |
| self.assertIsNotNone(outputs) | |
| class FlaxCLIPTextModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=12, | |
| seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| dropout=0.1, | |
| attention_dropout=0.1, | |
| max_position_embeddings=512, | |
| initializer_range=0.02, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.max_position_embeddings = max_position_embeddings | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| if input_mask is not None: | |
| batch_size, seq_length = input_mask.shape | |
| rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) | |
| for batch_idx, start_index in enumerate(rnd_start_indices): | |
| input_mask[batch_idx, :start_index] = 1 | |
| input_mask[batch_idx, start_index:] = 0 | |
| config = CLIPTextConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| dropout=self.dropout, | |
| attention_dropout=self.attention_dropout, | |
| max_position_embeddings=self.max_position_embeddings, | |
| initializer_range=self.initializer_range, | |
| ) | |
| return config, input_ids, input_mask | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, input_mask = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
| return config, inputs_dict | |
| class FlaxCLIPTextModelTest(FlaxModelTesterMixin, unittest.TestCase): | |
| all_model_classes = (FlaxCLIPTextModel,) if is_flax_available() else () | |
| def setUp(self): | |
| self.model_tester = FlaxCLIPTextModelTester(self) | |
| # FlaxCLIPTextModel does not have any base model | |
| def test_save_load_from_base(self): | |
| pass | |
| # FlaxCLIPVisionModel does not have any base model | |
| def test_save_load_to_base(self): | |
| pass | |
| # FlaxCLIPVisionModel does not have any base model | |
| def test_save_load_from_base_pt(self): | |
| pass | |
| # FlaxCLIPVisionModel does not have any base model | |
| def test_save_load_to_base_pt(self): | |
| pass | |
| # FlaxCLIPVisionModel does not have any base model | |
| def test_save_load_bf16_to_base_pt(self): | |
| pass | |
| def test_model_from_pretrained(self): | |
| for model_class_name in self.all_model_classes: | |
| model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) | |
| outputs = model(np.ones((1, 1))) | |
| self.assertIsNotNone(outputs) | |
| class FlaxCLIPModelTester: | |
| def __init__(self, parent, is_training=True): | |
| self.parent = parent | |
| self.text_model_tester = FlaxCLIPTextModelTester(parent) | |
| self.vision_model_tester = FlaxCLIPVisionModelTester(parent) | |
| self.is_training = is_training | |
| def prepare_config_and_inputs(self): | |
| text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
| vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() | |
| config = CLIPConfig.from_text_vision_configs(text_config, vision_config, projection_dim=64) | |
| return config, input_ids, attention_mask, pixel_values | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, attention_mask, pixel_values = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "attention_mask": attention_mask, | |
| "pixel_values": pixel_values, | |
| } | |
| return config, inputs_dict | |
| class FlaxCLIPModelTest(FlaxModelTesterMixin, unittest.TestCase): | |
| all_model_classes = (FlaxCLIPModel,) if is_flax_available() else () | |
| test_attention_outputs = False | |
| def setUp(self): | |
| self.model_tester = FlaxCLIPModelTester(self) | |
| # hidden_states are tested in individual model tests | |
| def test_hidden_states_output(self): | |
| pass | |
| def test_jit_compilation(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| with self.subTest(model_class.__name__): | |
| prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
| model = model_class(config) | |
| def model_jitted(input_ids, pixel_values, **kwargs): | |
| return model(input_ids=input_ids, pixel_values=pixel_values, **kwargs).to_tuple() | |
| with self.subTest("JIT Enabled"): | |
| jitted_outputs = model_jitted(**prepared_inputs_dict) | |
| with self.subTest("JIT Disabled"): | |
| with jax.disable_jit(): | |
| outputs = model_jitted(**prepared_inputs_dict) | |
| self.assertEqual(len(outputs), len(jitted_outputs)) | |
| for jitted_output, output in zip(jitted_outputs[:4], outputs[:4]): | |
| self.assertEqual(jitted_output.shape, output.shape) | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.__call__) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["input_ids", "pixel_values", "attention_mask", "position_ids"] | |
| self.assertListEqual(arg_names[:4], expected_arg_names) | |
| def test_get_image_features(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| model = FlaxCLIPModel(config) | |
| def model_jitted(pixel_values): | |
| return model.get_image_features(pixel_values=pixel_values) | |
| with self.subTest("JIT Enabled"): | |
| jitted_output = model_jitted(inputs_dict["pixel_values"]) | |
| with self.subTest("JIT Disabled"): | |
| with jax.disable_jit(): | |
| output = model_jitted(inputs_dict["pixel_values"]) | |
| self.assertEqual(jitted_output.shape, output.shape) | |
| self.assertTrue(np.allclose(jitted_output, output, atol=1e-3)) | |
| def test_get_text_features(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| model = FlaxCLIPModel(config) | |
| def model_jitted(input_ids, attention_mask, **kwargs): | |
| return model.get_text_features(input_ids=input_ids, attention_mask=attention_mask) | |
| with self.subTest("JIT Enabled"): | |
| jitted_output = model_jitted(**inputs_dict) | |
| with self.subTest("JIT Disabled"): | |
| with jax.disable_jit(): | |
| output = model_jitted(**inputs_dict) | |
| self.assertEqual(jitted_output.shape, output.shape) | |
| self.assertTrue(np.allclose(jitted_output, output, atol=1e-3)) | |
| def test_model_from_pretrained(self): | |
| for model_class_name in self.all_model_classes: | |
| model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) | |
| outputs = model(input_ids=np.ones((1, 1)), pixel_values=np.ones((1, 3, 224, 224))) | |
| self.assertIsNotNone(outputs) | |
| # overwrite from common since FlaxCLIPModel returns nested output | |
| # which is not supported in the common test | |
| def test_equivalence_pt_to_flax(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| with self.subTest(model_class.__name__): | |
| # prepare inputs | |
| prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
| pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} | |
| # load corresponding PyTorch class | |
| pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning | |
| pt_model_class = getattr(transformers, pt_model_class_name) | |
| pt_model = pt_model_class(config).eval() | |
| fx_model = model_class(config, dtype=jnp.float32) | |
| fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) | |
| fx_model.params = fx_state | |
| with torch.no_grad(): | |
| pt_outputs = pt_model(**pt_inputs).to_tuple() | |
| fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() | |
| self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") | |
| for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): | |
| self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| pt_model.save_pretrained(tmpdirname) | |
| fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True) | |
| fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple() | |
| self.assertEqual( | |
| len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch" | |
| ) | |
| for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): | |
| self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2) | |
| # overwrite from common since FlaxCLIPModel returns nested output | |
| # which is not supported in the common test | |
| def test_equivalence_flax_to_pt(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| with self.subTest(model_class.__name__): | |
| # prepare inputs | |
| prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
| pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} | |
| # load corresponding PyTorch class | |
| pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning | |
| pt_model_class = getattr(transformers, pt_model_class_name) | |
| pt_model = pt_model_class(config).eval() | |
| fx_model = model_class(config, dtype=jnp.float32) | |
| pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) | |
| # make sure weights are tied in PyTorch | |
| pt_model.tie_weights() | |
| with torch.no_grad(): | |
| pt_outputs = pt_model(**pt_inputs).to_tuple() | |
| fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() | |
| self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") | |
| for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): | |
| self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| fx_model.save_pretrained(tmpdirname) | |
| pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True) | |
| with torch.no_grad(): | |
| pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() | |
| self.assertEqual( | |
| len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch" | |
| ) | |
| for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs_loaded[:4]): | |
| self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
| # overwrite from common since FlaxCLIPModel returns nested output | |
| # which is not supported in the common test | |
| def test_from_pretrained_save_pretrained(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| if model_class.__name__ != "FlaxBertModel": | |
| continue | |
| with self.subTest(model_class.__name__): | |
| model = model_class(config) | |
| prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
| outputs = model(**prepared_inputs_dict).to_tuple() | |
| # verify that normal save_pretrained works as expected | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model_loaded = model_class.from_pretrained(tmpdirname) | |
| outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()[:4] | |
| for output_loaded, output in zip(outputs_loaded, outputs): | |
| self.assert_almost_equals(output_loaded, output, 1e-3) | |
| # verify that save_pretrained for distributed training | |
| # with `params=params` works as expected | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname, params=model.params) | |
| model_loaded = model_class.from_pretrained(tmpdirname) | |
| outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()[:4] | |
| for output_loaded, output in zip(outputs_loaded, outputs): | |
| self.assert_almost_equals(output_loaded, output, 1e-3) | |