Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the TensorFlow ConvNext model. """ | |
| import inspect | |
| import unittest | |
| from typing import List, Tuple | |
| from transformers import ConvNextConfig | |
| from transformers.testing_utils import require_tf, require_vision, slow | |
| from transformers.utils import cached_property, is_tf_available, is_vision_available | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_tf_available(): | |
| import tensorflow as tf | |
| from transformers import TFConvNextForImageClassification, TFConvNextModel | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import ConvNextFeatureExtractor | |
| class TFConvNextModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| image_size=32, | |
| num_channels=3, | |
| num_stages=4, | |
| hidden_sizes=[10, 20, 30, 40], | |
| depths=[2, 2, 3, 2], | |
| is_training=True, | |
| use_labels=True, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| type_sequence_label_size=10, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.num_channels = num_channels | |
| self.num_stages = num_stages | |
| self.hidden_sizes = hidden_sizes | |
| self.depths = depths | |
| self.is_training = is_training | |
| self.use_labels = use_labels | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| labels = None | |
| if self.use_labels: | |
| labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| config = self.get_config() | |
| return config, pixel_values, labels | |
| def get_config(self): | |
| return ConvNextConfig( | |
| num_channels=self.num_channels, | |
| hidden_sizes=self.hidden_sizes, | |
| depths=self.depths, | |
| num_stages=self.num_stages, | |
| hidden_act=self.hidden_act, | |
| is_decoder=False, | |
| initializer_range=self.initializer_range, | |
| ) | |
| def create_and_check_model(self, config, pixel_values, labels): | |
| model = TFConvNextModel(config=config) | |
| result = model(pixel_values, training=False) | |
| # expected last hidden states: B, C, H // 32, W // 32 | |
| self.parent.assertEqual( | |
| result.last_hidden_state.shape, | |
| (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), | |
| ) | |
| def create_and_check_for_image_classification(self, config, pixel_values, labels): | |
| config.num_labels = self.type_sequence_label_size | |
| model = TFConvNextForImageClassification(config) | |
| result = model(pixel_values, labels=labels, training=False) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values, labels = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values} | |
| return config, inputs_dict | |
| class TFConvNextModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| """ | |
| Here we also overwrite some of the tests of test_modeling_common.py, as ConvNext does not use input_ids, inputs_embeds, | |
| attention_mask and seq_length. | |
| """ | |
| all_model_classes = (TFConvNextModel, TFConvNextForImageClassification) if is_tf_available() else () | |
| pipeline_model_mapping = ( | |
| {"feature-extraction": TFConvNextModel, "image-classification": TFConvNextForImageClassification} | |
| if is_tf_available() | |
| else {} | |
| ) | |
| test_pruning = False | |
| test_onnx = False | |
| test_resize_embeddings = False | |
| test_head_masking = False | |
| has_attentions = False | |
| def setUp(self): | |
| self.model_tester = TFConvNextModelTester(self) | |
| self.config_tester = ConfigTester( | |
| self, | |
| config_class=ConvNextConfig, | |
| has_text_modality=False, | |
| hidden_size=37, | |
| ) | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_keras_fit(self): | |
| super().test_keras_fit() | |
| def test_model_common_attributes(self): | |
| pass | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.call) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_dataset_conversion(self): | |
| super().test_dataset_conversion() | |
| def test_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
| expected_num_stages = self.model_tester.num_stages | |
| self.assertEqual(len(hidden_states), expected_num_stages + 1) | |
| # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-2:]), | |
| [self.model_tester.image_size // 4, self.model_tester.image_size // 4], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # Since ConvNext does not have any attention we need to rewrite this test. | |
| def test_model_outputs_equivalence(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): | |
| tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs) | |
| dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple() | |
| def recursive_check(tuple_object, dict_object): | |
| if isinstance(tuple_object, (List, Tuple)): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif tuple_object is None: | |
| return | |
| else: | |
| self.assertTrue( | |
| all(tf.equal(tuple_object, dict_object)), | |
| msg=( | |
| "Tuple and dict output are not equal. Difference:" | |
| f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" | |
| ), | |
| ) | |
| recursive_check(tuple_output, dict_output) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| check_equivalence(model, tuple_inputs, dict_inputs) | |
| tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| check_equivalence(model, tuple_inputs, dict_inputs) | |
| tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) | |
| tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) | |
| def test_for_image_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
| def test_model_from_pretrained(self): | |
| model = TFConvNextModel.from_pretrained("facebook/convnext-tiny-224") | |
| self.assertIsNotNone(model) | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
| return image | |
| class TFConvNextModelIntegrationTest(unittest.TestCase): | |
| def default_feature_extractor(self): | |
| return ( | |
| ConvNextFeatureExtractor.from_pretrained("facebook/convnext-tiny-224") if is_vision_available() else None | |
| ) | |
| def test_inference_image_classification_head(self): | |
| model = TFConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224") | |
| feature_extractor = self.default_feature_extractor | |
| image = prepare_img() | |
| inputs = feature_extractor(images=image, return_tensors="tf") | |
| # forward pass | |
| outputs = model(**inputs) | |
| # verify the logits | |
| expected_shape = tf.TensorShape((1, 1000)) | |
| self.assertEqual(outputs.logits.shape, expected_shape) | |
| expected_slice = tf.constant([-0.0260, -0.4739, 0.1911]) | |
| tf.debugging.assert_near(outputs.logits[0, :3], expected_slice, atol=1e-4) | |