Spaces:
Runtime error
Runtime error
| """ Testing suite for the Tensorflow CvT model. """ | |
| import inspect | |
| import unittest | |
| from math import floor | |
| import numpy as np | |
| from transformers import CvtConfig | |
| from transformers.testing_utils import require_tf, require_vision, slow | |
| from transformers.utils import cached_property, is_tf_available, is_vision_available | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_tf_available(): | |
| import tensorflow as tf | |
| from transformers import TFCvtForImageClassification, TFCvtModel | |
| from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import AutoFeatureExtractor | |
| class TFCvtConfigTester(ConfigTester): | |
| def create_and_test_config_common_properties(self): | |
| config = self.config_class(**self.inputs_dict) | |
| self.parent.assertTrue(hasattr(config, "embed_dim")) | |
| self.parent.assertTrue(hasattr(config, "num_heads")) | |
| class TFCvtModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| image_size=64, | |
| num_channels=3, | |
| embed_dim=[16, 48, 96], | |
| num_heads=[1, 3, 6], | |
| depth=[1, 2, 10], | |
| patch_sizes=[7, 3, 3], | |
| patch_stride=[4, 2, 2], | |
| patch_padding=[2, 1, 1], | |
| stride_kv=[2, 2, 2], | |
| cls_token=[False, False, True], | |
| attention_drop_rate=[0.0, 0.0, 0.0], | |
| initializer_range=0.02, | |
| layer_norm_eps=1e-12, | |
| is_training=True, | |
| use_labels=True, | |
| num_labels=2, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.patch_sizes = patch_sizes | |
| self.patch_stride = patch_stride | |
| self.patch_padding = patch_padding | |
| self.is_training = is_training | |
| self.use_labels = use_labels | |
| self.num_labels = num_labels | |
| self.num_channels = num_channels | |
| self.embed_dim = embed_dim | |
| self.num_heads = num_heads | |
| self.stride_kv = stride_kv | |
| self.depth = depth | |
| self.cls_token = cls_token | |
| self.attention_drop_rate = attention_drop_rate | |
| self.initializer_range = initializer_range | |
| self.layer_norm_eps = layer_norm_eps | |
| def prepare_config_and_inputs(self): | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| labels = None | |
| if self.use_labels: | |
| # create a random int32 tensor of given shape | |
| labels = ids_tensor([self.batch_size], self.num_labels) | |
| config = self.get_config() | |
| return config, pixel_values, labels | |
| def get_config(self): | |
| return CvtConfig( | |
| image_size=self.image_size, | |
| num_labels=self.num_labels, | |
| num_channels=self.num_channels, | |
| embed_dim=self.embed_dim, | |
| num_heads=self.num_heads, | |
| patch_sizes=self.patch_sizes, | |
| patch_padding=self.patch_padding, | |
| patch_stride=self.patch_stride, | |
| stride_kv=self.stride_kv, | |
| depth=self.depth, | |
| cls_token=self.cls_token, | |
| attention_drop_rate=self.attention_drop_rate, | |
| initializer_range=self.initializer_range, | |
| ) | |
| def create_and_check_model(self, config, pixel_values, labels): | |
| model = TFCvtModel(config=config) | |
| result = model(pixel_values, training=False) | |
| image_size = (self.image_size, self.image_size) | |
| height, width = image_size[0], image_size[1] | |
| for i in range(len(self.depth)): | |
| height = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) | |
| width = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width)) | |
| def create_and_check_for_image_classification(self, config, pixel_values, labels): | |
| config.num_labels = self.num_labels | |
| model = TFCvtForImageClassification(config) | |
| result = model(pixel_values, labels=labels, training=False) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values, labels = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values} | |
| return config, inputs_dict | |
| class TFCvtModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| """ | |
| Here we also overwrite some of the tests of test_modeling_common.py, as Cvt | |
| does not use input_ids, inputs_embeds, attention_mask and seq_length. | |
| """ | |
| all_model_classes = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () | |
| pipeline_model_mapping = ( | |
| {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} | |
| if is_tf_available() | |
| else {} | |
| ) | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_head_masking = False | |
| has_attentions = False | |
| test_onnx = False | |
| def setUp(self): | |
| self.model_tester = TFCvtModelTester(self) | |
| self.config_tester = TFCvtConfigTester(self, config_class=CvtConfig, has_text_modality=False, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.create_and_test_config_common_properties() | |
| self.config_tester.create_and_test_config_to_json_string() | |
| self.config_tester.create_and_test_config_to_json_file() | |
| self.config_tester.create_and_test_config_from_and_save_pretrained() | |
| self.config_tester.create_and_test_config_with_num_labels() | |
| self.config_tester.check_config_can_be_init_without_params() | |
| self.config_tester.check_config_arguments_init() | |
| def test_attention_outputs(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| pass | |
| def test_dataset_conversion(self): | |
| super().test_dataset_conversion() | |
| def test_keras_fit(self): | |
| super().test_keras_fit() | |
| def test_keras_fit_mixed_precision(self): | |
| policy = tf.keras.mixed_precision.Policy("mixed_float16") | |
| tf.keras.mixed_precision.set_global_policy(policy) | |
| super().test_keras_fit() | |
| tf.keras.mixed_precision.set_global_policy("float32") | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.call) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states = outputs.hidden_states | |
| expected_num_layers = len(self.model_tester.depth) | |
| self.assertEqual(len(hidden_states), expected_num_layers) | |
| # verify the first hidden states (first block) | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-3:]), | |
| [ | |
| self.model_tester.embed_dim[0], | |
| self.model_tester.image_size // 4, | |
| self.model_tester.image_size // 4, | |
| ], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_for_image_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
| def test_model_from_pretrained(self): | |
| for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = TFCvtModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
| return image | |
| class TFCvtModelIntegrationTest(unittest.TestCase): | |
| def default_feature_extractor(self): | |
| return AutoFeatureExtractor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) | |
| def test_inference_image_classification_head(self): | |
| model = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) | |
| feature_extractor = self.default_feature_extractor | |
| image = prepare_img() | |
| inputs = feature_extractor(images=image, return_tensors="tf") | |
| # forward pass | |
| outputs = model(**inputs) | |
| # verify the logits | |
| expected_shape = tf.TensorShape((1, 1000)) | |
| self.assertEqual(outputs.logits.shape, expected_shape) | |
| expected_slice = tf.constant([0.9285, 0.9015, -0.3150]) | |
| self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), expected_slice, atol=1e-4)) | |