File size: 33,602 Bytes
4724018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8c152
4724018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
import os
import sys
import math
from tqdm import tqdm
from PIL import Image, ImageDraw
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# try:
#     sys.path.append(os.path.join(project_root, "submodules/MoGe"))
#     os.environ["TOKENIZERS_PARALLELISM"] = "false"
# except:
#     print("Warning: MoGe not found, motion transfer will not be applied")
    
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from diffusers import CogVideoXDPMScheduler
from diffusers.utils import export_to_video, load_image, load_video

# from models.spatracker.predictor import SpaTrackerPredictor
# from models.spatracker.utils.visualizer import Visualizer
from models.cogvideox_tracking import CogVideoXImageToVideoPipelineTracking

# from submodules.MoGe.moge.model import MoGeModel
from image_gen_aux import DepthPreprocessor
from moviepy.editor import ImageSequenceClip
from typing import Any, Dict, Optional, Tuple, Union, List, Callable

class DiffusionAsShaderPipeline:
    def __init__(self, gpu_id=0, output_dir='outputs'):
        """Initialize MotionTransfer class
        
        Args:
            gpu_id (int): GPU device ID
            output_dir (str): Output directory path
        """
        # video parameters
        self.max_depth = 65.0
        self.fps = 8

        # camera parameters
        self.camera_motion=None
        self.fov=55

        # device
        self.device = f"cuda"

        # files
        self.output_dir = output_dir
        os.makedirs(output_dir, exist_ok=True)
        
        # Initialize transform
        self.transform = transforms.Compose([
            transforms.Resize((480, 720)),
            transforms.ToTensor()
        ])

    @torch.no_grad()
    def _infer(
        self, 
        prompt: str,
        model_path: str,
        tracking_tensor: torch.Tensor = None,
        image_tensor: torch.Tensor = None,  # [C,H,W] in range [0,1]
        output_path: str = "./output.mp4",
        num_inference_steps: int = 50,
        guidance_scale: float = 6.0,
        num_videos_per_prompt: int = 1,
        dtype: torch.dtype = torch.bfloat16,
        fps: int = 24,
        seed: int = 0,
        coarse_video: Optional[torch.Tensor] = None,
        start_noise_t: Optional[int] = 10
    ):
        """
        Generates a video based on the given prompt and saves it to the specified path.

        Parameters:
        - prompt (str): The description of the video to be generated.
        - model_path (str): The path of the pre-trained model to be used.
        - tracking_tensor (torch.Tensor): Tracking video tensor [T, C, H, W] in range [0,1]
        - image_tensor (torch.Tensor): Input image tensor [C, H, W] in range [0,1]
        - output_path (str): The path where the generated video will be saved.
        - num_inference_steps (int): Number of steps for the inference process.
        - guidance_scale (float): The scale for classifier-free guidance.
        - num_videos_per_prompt (int): Number of videos to generate per prompt.
        - dtype (torch.dtype): The data type for computation.
        - seed (int): The seed for reproducibility.
        """
        pipe = CogVideoXImageToVideoPipelineTracking.from_pretrained(model_path, torch_dtype=dtype)
        
        # Convert tensor to PIL Image
        image_np = (image_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8)
        image = Image.fromarray(image_np)
        height, width = image.height, image.width

        pipe.transformer.eval()
        pipe.text_encoder.eval()
        pipe.vae.eval()

        # Process tracking tensor
        tracking_maps = tracking_tensor.float() # [T, C, H, W]
        tracking_maps = tracking_maps.to(device=self.device, dtype=dtype)
        tracking_first_frame = tracking_maps[0:1]  # Get first frame as [1, C, H, W]
        height, width = tracking_first_frame.shape[2], tracking_first_frame.shape[3]

        if coarse_video is not None:
            coarse_video = coarse_video.to(device=self.device, dtype=dtype).unsqueeze(0).permute(0, 2, 1, 3, 4)

        # 2. Set Scheduler.
        pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")

        pipe.to(self.device, dtype=dtype)
        # pipe.enable_sequential_cpu_offload()

        pipe.vae.enable_slicing()
        pipe.vae.enable_tiling()
        pipe.transformer.eval()
        pipe.text_encoder.eval()
        pipe.vae.eval()

        pipe.transformer.gradient_checkpointing = False
        
        print("Encoding tracking maps")
        tracking_maps = tracking_maps.unsqueeze(0) # [B, T, C, H, W]
        tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4)  # [B, C, T, H, W]
        tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist
        tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor
        tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4)  # [B, F, C, H, W]

        # 4. Generate the video frames based on the prompt.
        video_generate = pipe(
            prompt=prompt,
            negative_prompt="The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.",
            image=image,
            num_videos_per_prompt=num_videos_per_prompt,
            num_inference_steps=num_inference_steps,
            num_frames=49,
            use_dynamic_cfg=True,
            guidance_scale=guidance_scale,
            generator=torch.Generator().manual_seed(seed),
            tracking_maps=tracking_maps,
            tracking_image=tracking_first_frame,
            height=height,
            width=width,
            coarse_video=coarse_video,
            start_noise_t=start_noise_t
        ).frames[0]
        
        # 5. Export the generated frames to a video file. fps must be 8 for original video.
        output_path = output_path if output_path else f"result.mp4"
        os.makedirs(os.path.dirname(output_path), exist_ok=True)
        export_to_video(video_generate, output_path, fps=fps)
        
    #========== camera parameters ==========#

    def _set_camera_motion(self, camera_motion):
        self.camera_motion = camera_motion

    def _get_intr(self, fov, H=480, W=720):
        fov_rad = math.radians(fov)
        focal_length = (W / 2) / math.tan(fov_rad / 2)

        cx = W / 2
        cy = H / 2

        intr = torch.tensor([
            [focal_length, 0, cx],
            [0, focal_length, cy],
            [0, 0, 1]
        ], dtype=torch.float32)

        return intr

    def _apply_poses(self, pts, intr, poses):
        """
        Args:
            pts (torch.Tensor): pointclouds coordinates [T, N, 3]
            intr (torch.Tensor): camera intrinsics [T, 3, 3]
            poses (numpy.ndarray): camera poses [T, 4, 4]
        """
        poses = torch.from_numpy(poses).float().to(self.device)
        
        T, N, _ = pts.shape
        ones = torch.ones(T, N, 1, device=self.device, dtype=torch.float)
        pts_hom = torch.cat([pts[:, :, :2], ones], dim=-1)  # (T, N, 3)
        pts_cam = torch.bmm(pts_hom, torch.linalg.inv(intr).transpose(1, 2))  # (T, N, 3)
        pts_cam[:,:, :3] /= pts[:, :, 2:3]

        # to homogeneous
        pts_cam = torch.cat([pts_cam, ones], dim=-1)  # (T, N, 4)
        
        if poses.shape[0] == 1:
            poses = poses.repeat(T, 1, 1)
        elif poses.shape[0] != T:
            raise ValueError(f"Poses length ({poses.shape[0]}) must match sequence length ({T})")
        
        pts_world = torch.bmm(pts_cam, poses.transpose(1, 2))[:, :, :3]  # (T, N, 3)

        pts_proj = torch.bmm(pts_world, intr.transpose(1, 2))  # (T, N, 3)
        pts_proj[:, :, :2] /= pts_proj[:, :, 2:3]

        return pts_proj
    
    def apply_traj_on_tracking(self, pred_tracks, camera_motion=None, fov=55, frame_num=49):
        intr = self._get_intr(fov).unsqueeze(0).repeat(frame_num, 1, 1).to(self.device)
        tracking_pts = self._apply_poses(pred_tracks.squeeze(), intr, camera_motion).unsqueeze(0)
        return tracking_pts
    
    ##============= SpatialTracker =============##
    
    def generate_tracking_spatracker(self, video_tensor, density=70):
        """Generate tracking video
        
        Args:
            video_tensor (torch.Tensor): Input video tensor
            
        Returns:
            str: Path to tracking video
        """
        print("Loading tracking models...")
        # Load tracking model
        tracker = SpaTrackerPredictor(
            checkpoint=os.path.join(project_root, 'checkpoints/spaT_final.pth'),
            interp_shape=(384, 576),
            seq_length=12
        ).to(self.device)
        
        # Load depth model
        self.depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti")
        self.depth_preprocessor.to(self.device)
        
        try:
            video = video_tensor.unsqueeze(0).to(self.device)
            
            video_depths = []
            for i in range(video_tensor.shape[0]):
                frame = (video_tensor[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
                depth = self.depth_preprocessor(Image.fromarray(frame))[0]
                depth_tensor = transforms.ToTensor()(depth)  # [1, H, W]
                video_depths.append(depth_tensor)
            video_depth = torch.stack(video_depths, dim=0).to(self.device)
            # print("Video depth shape:", video_depth.shape)
            
            segm_mask = np.ones((480, 720), dtype=np.uint8)
            
            pred_tracks, pred_visibility, T_Firsts = tracker(
                video * 255, 
                video_depth=video_depth,
                grid_size=density,
                backward_tracking=False,
                depth_predictor=None,
                grid_query_frame=0,
                segm_mask=torch.from_numpy(segm_mask)[None, None].to(self.device),
                wind_length=12,
                progressive_tracking=False
            )

            return pred_tracks, pred_visibility, T_Firsts
            
        finally:
            # Clean up GPU memory
            del tracker, self.depth_preprocessor
            torch.cuda.empty_cache()

    def visualize_tracking_spatracker(self, video, pred_tracks, pred_visibility, T_Firsts, save_tracking=True):
        video = video.unsqueeze(0).to(self.device)
        vis = Visualizer(save_dir=self.output_dir, grayscale=False, fps=24, pad_value=0)
        msk_query = (T_Firsts == 0)
        pred_tracks = pred_tracks[:,:,msk_query.squeeze()]
        pred_visibility = pred_visibility[:,:,msk_query.squeeze()]
        
        tracking_video = vis.visualize(video=video, tracks=pred_tracks,
                        visibility=pred_visibility, save_video=False,
                        filename="temp")
        
        tracking_video = tracking_video.squeeze(0) # [T, C, H, W]
        wide_list = list(tracking_video.unbind(0))
        wide_list = [wide.permute(1, 2, 0).cpu().numpy() for wide in wide_list]
        clip = ImageSequenceClip(wide_list, fps=self.fps)

        tracking_path = None
        if save_tracking:
            try:
                tracking_path = os.path.join(self.output_dir, "tracking_video.mp4")
                clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
                print(f"Video saved to {tracking_path}")
            except Exception as e:
                print(f"Warning: Failed to save tracking video: {e}")
                tracking_path = None
        
        # Convert tracking_video back to tensor in range [0,1]
        tracking_frames = np.array(list(clip.iter_frames())) / 255.0
        tracking_video = torch.from_numpy(tracking_frames).permute(0, 3, 1, 2).float()
        
        return tracking_path, tracking_video
    
    ##============= MoGe =============##

    def valid_mask(self, pixels, W, H):
        """Check if pixels are within valid image bounds
        
        Args:
            pixels (numpy.ndarray): Pixel coordinates of shape [N, 2]
            W (int): Image width
            H (int): Image height
            
        Returns:
            numpy.ndarray: Boolean mask of valid pixels
        """
        return ((pixels[:, 0] >= 0) & (pixels[:, 0] < W) & (pixels[:, 1] > 0) & \
                 (pixels[:, 1] < H))

    def sort_points_by_depth(self, points, depths):
        """Sort points by depth values
        
        Args:
            points (numpy.ndarray): Points array of shape [N, 2]
            depths (numpy.ndarray): Depth values of shape [N]
            
        Returns:
            tuple: (sorted_points, sorted_depths, sort_index)
        """
        # Combine points and depths into a single array for sorting
        combined = np.hstack((points, depths[:, None]))  # Nx3 (points + depth)
        # Sort by depth (last column) in descending order
        sort_index = combined[:, -1].argsort()[::-1]
        sorted_combined = combined[sort_index]
        # Split back into points and depths
        sorted_points = sorted_combined[:, :-1]
        sorted_depths = sorted_combined[:, -1]
        return sorted_points, sorted_depths, sort_index

    def draw_rectangle(self, rgb, coord, side_length, color=(255, 0, 0)):
        """Draw a rectangle on the image
        
        Args:
            rgb (PIL.Image): Image to draw on
            coord (tuple): Center coordinates (x, y)
            side_length (int): Length of rectangle sides
            color (tuple): RGB color tuple
        """
        draw = ImageDraw.Draw(rgb)
        # Calculate the bounding box of the rectangle
        left_up_point = (coord[0] - side_length//2, coord[1] - side_length//2)  
        right_down_point = (coord[0] + side_length//2, coord[1] + side_length//2)
        color = tuple(list(color))

        draw.rectangle(
            [left_up_point, right_down_point],
            fill=tuple(color),
            outline=tuple(color),
        )
    
    def visualize_tracking_moge(self, points, mask, save_tracking=True):
        """Visualize tracking results from MoGe model
        
        Args:
            points (numpy.ndarray): Points array of shape [T, H, W, 3]
            mask (numpy.ndarray): Binary mask of shape [H, W]
            save_tracking (bool): Whether to save tracking video
            
        Returns:
            tuple: (tracking_path, tracking_video)
                - tracking_path (str): Path to saved tracking video, None if save_tracking is False
                - tracking_video (torch.Tensor): Tracking visualization tensor of shape [T, C, H, W] in range [0,1]
        """
        # Create color array
        T, H, W, _ = points.shape
        colors = np.zeros((H, W, 3), dtype=np.uint8)

        # Set R channel - based on x coordinates (smaller on the left)
        colors[:, :, 0] = np.tile(np.linspace(0, 255, W), (H, 1))

        # Set G channel - based on y coordinates (smaller on the top)
        colors[:, :, 1] = np.tile(np.linspace(0, 255, H), (W, 1)).T

        # Set B channel - based on depth
        z_values = points[0, :, :, 2]  # get z values
        inv_z = 1 / z_values  # calculate 1/z
        # Calculate 2% and 98% percentiles
        p2 = np.percentile(inv_z, 2)
        p98 = np.percentile(inv_z, 98)
        # Normalize to [0,1] range
        normalized_z = np.clip((inv_z - p2) / (p98 - p2), 0, 1)
        colors[:, :, 2] = (normalized_z * 255).astype(np.uint8)
        colors = colors.astype(np.uint8)

        # colors = colors[mask]
        # points = points * mask[None, :, :, None]
        
        points = points.reshape(T, -1, 3)
        colors = colors.reshape(-1, 3)
        
        # Initialize list to store frames
        frames = []
        
        for i, pts_i in enumerate(tqdm(points)):
            pixels, depths = pts_i[..., :2], pts_i[..., 2]
            pixels[..., 0] = pixels[..., 0] * W
            pixels[..., 1] = pixels[..., 1] * H
            pixels = pixels.astype(int)
            
            valid = self.valid_mask(pixels, W, H)
            frame_rgb = colors[valid]
            pixels = pixels[valid]
            depths = depths[valid]
            
            img = Image.fromarray(np.uint8(np.zeros([H, W, 3])), mode="RGB")
            sorted_pixels, _, sort_index = self.sort_points_by_depth(pixels, depths)
            step = 1
            sorted_pixels = sorted_pixels[::step]
            sorted_rgb = frame_rgb[sort_index][::step]
            
            for j in range(sorted_pixels.shape[0]):
                self.draw_rectangle(
                    img,
                    coord=(sorted_pixels[j, 0], sorted_pixels[j, 1]),
                    side_length=2,
                    color=sorted_rgb[j],
                )
            frames.append(np.array(img))

        # Convert frames to video tensor in range [0,1]
        tracking_video = torch.from_numpy(np.stack(frames)).permute(0, 3, 1, 2).float() / 255.0

        tracking_path = None
        if save_tracking:
            try:
                tracking_path = os.path.join(self.output_dir, "tracking_video_moge.mp4")
                # Convert back to uint8 for saving
                uint8_frames = [frame.astype(np.uint8) for frame in frames]
                clip = ImageSequenceClip(uint8_frames, fps=self.fps)
                clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
                print(f"Video saved to {tracking_path}")
            except Exception as e:
                print(f"Warning: Failed to save tracking video: {e}")
                tracking_path = None

        return tracking_path, tracking_video
    
    def apply_tracking(self, video_tensor, fps=8, tracking_tensor=None, img_cond_tensor=None, prompt=None, checkpoint_path=None, coarse_video=None, start_noise_t=0, seed=0):
        """Generate final video with motion transfer
        
        Args:
            video_tensor (torch.Tensor): Input video tensor [T,C,H,W]
            fps (float): Input video FPS
            tracking_tensor (torch.Tensor): Tracking video tensor [T,C,H,W]
            image_tensor (torch.Tensor): First frame tensor [C,H,W] to use for generation
            prompt (str): Generation prompt
            checkpoint_path (str): Path to model checkpoint
        """
        self.fps = fps

        # Use first frame if no image provided
        if img_cond_tensor is None:
            img_cond_tensor = video_tensor[0]
        
        # Generate final video
        final_output = os.path.join(os.path.abspath(self.output_dir), "result.mp4" if coarse_video is None else f"result_{start_noise_t}.mp4")
        self._infer(
            prompt=prompt,
            model_path=checkpoint_path,
            tracking_tensor=tracking_tensor,
            image_tensor=img_cond_tensor,
            output_path=final_output,
            num_inference_steps=50,
            guidance_scale=6.0,
            dtype=torch.bfloat16,
            fps=self.fps,
            coarse_video=coarse_video,
            start_noise_t=start_noise_t,
            seed=seed
        )
        print(f"Final video generated successfully at: {final_output}")

    def _set_object_motion(self, motion_type):
        """Set object motion type
        
        Args:
            motion_type (str): Motion direction ('up', 'down', 'left', 'right')
        """
        self.object_motion = motion_type

class CameraMotionGenerator:
    def __init__(self, motion_type, frame_num=49, H=480, W=720, fx=None, fy=None, fov=55, device='cuda'):
        self.motion_type = motion_type
        self.frame_num = frame_num
        self.fov = fov
        self.device = device
        self.W = W
        self.H = H
        self.intr = torch.tensor([
            [0, 0, W / 2],
            [0, 0, H / 2],
            [0, 0, 1]
        ], dtype=torch.float32, device=device)
        # if fx, fy not provided
        if not fx or not fy:
            fov_rad = math.radians(fov)
            fx = fy = (W / 2) / math.tan(fov_rad / 2)
 
        self.intr[0, 0] = fx
        self.intr[1, 1] = fy        

    def _apply_poses(self, pts, poses):
        """
        Args:
            pts (torch.Tensor): pointclouds coordinates [T, N, 3]
            intr (torch.Tensor): camera intrinsics [T, 3, 3]
            poses (numpy.ndarray): camera poses [T, 4, 4]
        """
        if isinstance(poses, np.ndarray):
            poses = torch.from_numpy(poses)

        intr = self.intr.unsqueeze(0).repeat(self.frame_num, 1, 1).to(torch.float)
        T, N, _ = pts.shape
        ones = torch.ones(T, N, 1, device=self.device, dtype=torch.float)
        pts_hom = torch.cat([pts[:, :, :2], ones], dim=-1)  # (T, N, 3)
        pts_cam = torch.bmm(pts_hom, torch.linalg.inv(intr).transpose(1, 2))  # (T, N, 3)
        pts_cam[:,:, :3] *= pts[:, :, 2:3]

        # to homogeneous
        pts_cam = torch.cat([pts_cam, ones], dim=-1)  # (T, N, 4)
        
        if poses.shape[0] == 1:
            poses = poses.repeat(T, 1, 1)
        elif poses.shape[0] != T:
            raise ValueError(f"Poses length ({poses.shape[0]}) must match sequence length ({T})")
        
        poses = poses.to(torch.float).to(self.device)
        pts_world = torch.bmm(pts_cam, poses.transpose(1, 2))[:, :, :3]  # (T, N, 3)
        pts_proj = torch.bmm(pts_world, intr.transpose(1, 2))  # (T, N, 3)
        pts_proj[:, :, :2] /= pts_proj[:, :, 2:3]

        return pts_proj
    
    def w2s(self, pts, poses):
        if isinstance(poses, np.ndarray):
            poses = torch.from_numpy(poses)
        assert poses.shape[0] == self.frame_num
        poses = poses.to(torch.float32).to(self.device)
        T, N, _ = pts.shape  # (T, N, 3)
        intr = self.intr.unsqueeze(0).repeat(self.frame_num, 1, 1)
        # Step 1: 扩展点的维度,使其变成 (T, N, 4),最后一维填充1 (齐次坐标)
        ones = torch.ones((T, N, 1), device=self.device, dtype=pts.dtype)
        points_world_h = torch.cat([pts, ones], dim=-1)
        points_camera_h = torch.bmm(poses, points_world_h.permute(0, 2, 1))
        points_camera = points_camera_h[:, :3, :].permute(0, 2, 1)

        points_image_h = torch.bmm(points_camera, intr.permute(0, 2, 1))

        uv = points_image_h[:, :, :2] / points_image_h[:, :, 2:3]

        # Step 5: 提取深度 (Z) 并拼接
        depth = points_camera[:, :, 2:3]  # (T, N, 1)
        uvd = torch.cat([uv, depth], dim=-1)  # (T, N, 3)

        return uvd  # 屏幕坐标 + 深度 (T, N, 3)

    def apply_motion_on_pts(self, pts, camera_motion):
        tracking_pts = self._apply_poses(pts.squeeze(), camera_motion).unsqueeze(0)
        return tracking_pts
    
    def set_intr(self, K):
        if isinstance(K, np.ndarray):
            K = torch.from_numpy(K)
        self.intr = K.to(self.device)

    def rot_poses(self, angle, axis='y'):
        """
        pts (torch.Tensor): [T, N, 3]
        angle (int): angle of rotation (degree)
        """
        angle_rad = math.radians(angle)
        angles = torch.linspace(0, angle_rad, self.frame_num)
        rot_mats = torch.zeros(self.frame_num, 4, 4)
    
        for i, theta in enumerate(angles):
            cos_theta = torch.cos(theta)
            sin_theta = torch.sin(theta)
            if axis == 'x':
                rot_mats[i] = torch.tensor([
                [1, 0, 0, 0],
                [0, cos_theta, -sin_theta, 0],
                [0, sin_theta, cos_theta, 0],
                [0, 0, 0, 1]
            ], dtype=torch.float32)
            elif axis == 'y':
                rot_mats[i] = torch.tensor([
                    [cos_theta, 0, sin_theta, 0],
                    [0, 1, 0, 0],
                    [-sin_theta, 0, cos_theta, 0],
                    [0, 0, 0, 1]
                ], dtype=torch.float32)
            
            elif axis == 'z':
                rot_mats[i] = torch.tensor([
                    [cos_theta, -sin_theta, 0, 0],
                    [sin_theta, cos_theta, 0, 0],
                    [0, 0, 1, 0],
                    [0, 0, 0, 1]
                ], dtype=torch.float32)
            else:
                raise ValueError("Invalid axis value. Choose 'x', 'y', or 'z'.")
            
        return rot_mats.to(self.device)

    def trans_poses(self, dx, dy, dz):
        """
        params:
        - dx: float, displacement along x axis。
        - dy: float, displacement along y axis。
        - dz: float, displacement along z axis。

        ret:
        - matrices: torch.Tensor
        """
        trans_mats = torch.eye(4).unsqueeze(0).repeat(self.frame_num, 1, 1)  # (n, 4, 4)

        delta_x = dx / (self.frame_num - 1)
        delta_y = dy / (self.frame_num - 1)
        delta_z = dz / (self.frame_num - 1)

        for i in range(self.frame_num):
            trans_mats[i, 0, 3] = i * delta_x
            trans_mats[i, 1, 3] = i * delta_y
            trans_mats[i, 2, 3] = i * delta_z

        return trans_mats.to(self.device)
    

    def _look_at(self, camera_position, target_position):
        # look at direction
        direction = target_position - camera_position
        direction /= np.linalg.norm(direction)
        # calculate rotation matrix
        up = np.array([0, 1, 0])
        right = np.cross(up, direction)
        right /= np.linalg.norm(right)
        up = np.cross(direction, right)
        rotation_matrix = np.vstack([right, up, direction])
        rotation_matrix = np.linalg.inv(rotation_matrix)
        return rotation_matrix

    def spiral_poses(self, radius, forward_ratio = 0.5, backward_ratio = 0.5, rotation_times = 0.1, look_at_times = 0.5):
        """Generate spiral camera poses
        
        Args:
            radius (float): Base radius of the spiral
            forward_ratio (float): Scale factor for forward motion
            backward_ratio (float): Scale factor for backward motion
            rotation_times (float): Number of rotations to complete
            look_at_times (float): Scale factor for look-at point distance
            
        Returns:
            torch.Tensor: Camera poses of shape [num_frames, 4, 4]
        """
        # Generate spiral trajectory
        t = np.linspace(0, 1, self.frame_num)
        r = np.sin(np.pi * t) * radius * rotation_times
        theta = 2 * np.pi * t
        
        # Calculate camera positions
        # Limit y motion for better floor/sky view
        y = r * np.cos(theta) * 0.3  
        x = r * np.sin(theta)
        z = -r
        z[z < 0] *= forward_ratio
        z[z > 0] *= backward_ratio
        
        # Set look-at target
        target_pos = np.array([0, 0, radius * look_at_times])
        cam_pos = np.vstack([x, y, z]).T
        cam_poses = []
        
        for pos in cam_pos:
            rot_mat = self._look_at(pos, target_pos)
            trans_mat = np.eye(4)
            trans_mat[:3, :3] = rot_mat
            trans_mat[:3, 3] = pos
            cam_poses.append(trans_mat[None])
            
        camera_poses = np.concatenate(cam_poses, axis=0)
        return torch.from_numpy(camera_poses).to(self.device)

    def rot(self, pts, angle, axis):
        """
        pts: torch.Tensor, (T, N, 2)
        """
        rot_mats = self.rot_poses(angle, axis)
        pts = self.apply_motion_on_pts(pts, rot_mats)
        return pts
    
    def trans(self, pts, dx, dy, dz):
        if pts.shape[-1] != 3:
            raise ValueError("points should be in the 3d coordinate.")
        trans_mats = self.trans_poses(dx, dy, dz)
        pts = self.apply_motion_on_pts(pts, trans_mats)
        return pts

    def spiral(self, pts, radius):
        spiral_poses = self.spiral_poses(radius)
        pts = self.apply_motion_on_pts(pts, spiral_poses)
        return pts

    def get_default_motion(self):
        if self.motion_type == 'trans':
            motion = self.trans_poses(0.1, 0, 0)
        elif self.motion_type == 'spiral':
            motion = self.spiral_poses(1)
        elif self.motion_type == 'rot':
            motion = self.rot_poses(-25, 'y')
        else:
            raise ValueError(f'camera_motion must be in [trans, spiral, rot], but get {self.motion_type}.')
    
        return motion

class ObjectMotionGenerator:
    def __init__(self, device="cuda:0"):
        """Initialize ObjectMotionGenerator
        
        Args:
            device (str): Device to run on
        """
        self.device = device
        self.num_frames = 49
        
    def _get_points_in_mask(self, pred_tracks, mask):
        """Get points that fall within the mask in first frame
        
        Args:
            pred_tracks (torch.Tensor): [num_frames, num_points, 3]
            mask (torch.Tensor): [H, W] binary mask
            
        Returns:
            torch.Tensor: Boolean mask of selected points [num_points]
        """
        first_frame_points = pred_tracks[0]  # [num_points, 3]
        xy_points = first_frame_points[:, :2]  # [num_points, 2]
        
        # Convert xy coordinates to pixel indices
        xy_pixels = xy_points.round().long()  # Convert to integer pixel coordinates
        
        # Clamp coordinates to valid range
        xy_pixels[:, 0].clamp_(0, mask.shape[1] - 1)  # x coordinates
        xy_pixels[:, 1].clamp_(0, mask.shape[0] - 1)  # y coordinates
        
        # Get mask values at point locations
        points_in_mask = mask[xy_pixels[:, 1], xy_pixels[:, 0]]  # Index using y, x order
        
        return points_in_mask
        
    def generate_motion(self, mask, motion_type, distance, num_frames=49):
        """Generate motion dictionary for the given parameters
        
        Args:
            mask (torch.Tensor): [H, W] binary mask
            motion_type (str): Motion direction ('up', 'down', 'left', 'right')
            distance (float): Total distance to move
            num_frames (int): Number of frames
            
        Returns:
            dict: Motion dictionary containing:
                - mask (torch.Tensor): Binary mask
                - motions (torch.Tensor): Per-frame motion vectors [num_frames, 4, 4]
        """

        self.num_frames = num_frames
        # Define motion template vectors
        template = {
            'up': torch.tensor([0, -1, 0]),
            'down': torch.tensor([0, 1, 0]),
            'left': torch.tensor([-1, 0, 0]),
            'right': torch.tensor([1, 0, 0]),
            'front': torch.tensor([0, 0, 1]),
            'back': torch.tensor([0, 0, -1])
        }
        
        if motion_type not in template:
            raise ValueError(f"Unknown motion type: {motion_type}")
            
        # Move mask to device
        mask = mask.to(self.device)
        
        # Generate per-frame motion matrices
        motions = []
        base_vec = template[motion_type].to(self.device) * distance
        
        for frame_idx in range(num_frames):
            # Calculate interpolation factor (0 to 1)
            t = frame_idx / (num_frames - 1)
            
            # Create motion matrix for current frame
            current_motion = torch.eye(4, device=self.device)
            current_motion[:3, 3] = base_vec * t
            motions.append(current_motion)
            
        motions = torch.stack(motions)  # [num_frames, 4, 4]
        
        return {
            'mask': mask,
            'motions': motions
        }
        
    def apply_motion(self, pred_tracks, motion_dict, tracking_method="spatracker"):
        """Apply motion to selected points
        
        Args:
            pred_tracks (torch.Tensor): [num_frames, num_points, 3] for spatracker
                                      or [T, H, W, 3] for moge
            motion_dict (dict): Motion dictionary containing mask and motions
            tracking_method (str): "spatracker" or "moge"
            
        Returns:
            torch.Tensor: Modified pred_tracks with same shape as input
        """
        pred_tracks = pred_tracks.to(self.device).float()
        
        if tracking_method == "moge":
            T, H, W, _ = pred_tracks.shape
            
            selected_mask = motion_dict['mask']
            valid_selected = ~torch.any(torch.isnan(pred_tracks[0]), dim=2) & selected_mask
            valid_selected = valid_selected.reshape([-1])
            modified_tracks = pred_tracks.clone().reshape(T, -1, 3)

            for frame_idx in range(self.num_frames):
                motion_mat = motion_dict['motions'][frame_idx]
                motion_mat[0, 3] /= W
                motion_mat[1, 3] /= H
                points = modified_tracks[frame_idx, valid_selected]
                points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1)

                transformed_points = torch.matmul(points_homo, motion_mat.T)
                modified_tracks[frame_idx, valid_selected] = transformed_points[:, :3]
            return modified_tracks
            
        else:
            points_in_mask = self._get_points_in_mask(pred_tracks, motion_dict['mask'])
            modified_tracks = pred_tracks.clone()
            
            for frame_idx in range(pred_tracks.shape[0]):
                motion_mat = motion_dict['motions'][frame_idx]
                points = modified_tracks[frame_idx, points_in_mask]
                points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1)
                transformed_points = torch.matmul(points_homo, motion_mat.T)
                modified_tracks[frame_idx, points_in_mask] = transformed_points[:, :3]
            
            return modified_tracks