File size: 11,427 Bytes
4724018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os 
import h5py
import torch
import torch.nn.functional as Fn
import numpy as np
import json

class DeformLoss(torch.nn.Module):

    def __init__(self):
        super().__init__()

        self.device = "cuda"
        self.N = 2048
        self.I33 = torch.eye(3, device=self.device).unsqueeze(0).repeat(self.N, 1, 1)
        self.dT = 0.0417
        self.grid_lim = 10
        self.grid_size = 125
        self.dx = self.grid_lim / self.grid_size
        self.inv_dx = 1 / self.dx
        self.density = 1000

    def forward_sequential(self, x, vol, F, C, frame_interval=2, norm_fac=5, v=None):
        
        # Denormalize x & Double dt (since we sample every 2 frames) for training
        if norm_fac > 0:
            x = x * 2 + norm_fac
        dT = self.dT * frame_interval

        loss = 0

        for bs in range(x.shape[0]):
            
            particle_mass = (self.density * vol[bs]).unsqueeze(-1).repeat(1, 3)

            start_t = 1 if frame_interval == 1 else 0
            end_t = x.shape[1] - 2
            for t in range(start_t, end_t):
                
                # Initialize
                grid_m = torch.zeros((self.grid_size, self.grid_size, self.grid_size), device=self.device)
                grid_v = torch.zeros((self.grid_size, self.grid_size, self.grid_size, 3), device=self.device)
                
                particle_x = x[bs, t]
                if v is not None:
                    particle_v = v[bs, t + 1]
                else:
                    particle_v = (x[bs, t + 2] - x[bs, t]) / (2 * dT)

                particle_F = F[bs, t].reshape(-1, 3, 3)
                particle_F_next = F[bs, t + 1].reshape(-1, 3, 3)
                particle_C = C[bs, t].reshape(-1, 3, 3)

                # P2G
                grid_pos = particle_x * self.inv_dx
                base_pos = (grid_pos - 0.5).int()
                fx = grid_pos - base_pos
                w = [0.5 * ((1.5 - fx) ** 2), 0.75 - ((fx - 1) ** 2), 0.5 * ((fx - 0.5) ** 2)]
                w = torch.stack(w, dim=2)
                dw = [fx - 1.5, -2 * (fx - 1), fx - 0.5]
                dw = torch.stack(dw, dim=2)

                for i in range(3):
                    for j in range(3):
                        for k in range(3):
                            dpos = torch.tensor([i, j, k], device=self.device).unsqueeze(0).repeat(self.N, 1)
                            dpos = (dpos - fx) * self.dx
                            ix = base_pos[:, 0] + i
                            iy = base_pos[:, 1] + j
                            iz = base_pos[:, 2] + k
                            weight = w[:, 0, i] * w[:, 1, j] * w[:, 2, k]
                            dweight = [dw[:, 0, i] * w[:, 1, j] * w[:, 2, k],
                                        w[:, 0, i] * dw[:, 1, j] * w[:, 2, k],
                                        w[:, 0, i] * w[:, 1, j] * dw[:, 2, k]]
                            dweight = torch.stack(dweight, dim=1) * self.inv_dx

                            v_in_add = weight.unsqueeze(-1) * particle_mass * (particle_v + \
                                (particle_C @ dpos.unsqueeze(-1)).squeeze(-1))
                            
                            flat_idx = ix * self.grid_size * self.grid_size + iy * self.grid_size + iz
                            flat_idx = flat_idx.long()
                            
                            grid_v = grid_v.view(-1, 3)
                            grid_v = grid_v.scatter_add(0, flat_idx.unsqueeze(-1).repeat(1, 3), v_in_add)
                            grid_v = grid_v.view(self.grid_size, self.grid_size, self.grid_size, 3)

                            grid_m = grid_m.view(-1)
                            grid_m = grid_m.scatter_add(0, flat_idx, weight * particle_mass[:, 0])
                            grid_m = grid_m.view(self.grid_size, self.grid_size, self.grid_size)

                # Grid Norm
                grid_m = torch.where(grid_m > 1e-15, grid_m, torch.ones_like(grid_m))
                grid_v = grid_v / grid_m.unsqueeze(-1)

                # G2P 
                new_F_pred = torch.zeros_like(particle_F)
                
                for i in range(3):
                    for j in range(3):
                        for k in range(3):
                            dpos = torch.tensor([i, j, k], device=self.device).unsqueeze(0).repeat(self.N, 1).float() - fx
                            ix = base_pos[:, 0] + i
                            iy = base_pos[:, 1] + j
                            iz = base_pos[:, 2] + k
                            
                            weight = w[:, 0, i] * w[:, 1, j] * w[:, 2, k]
                            dweight = [dw[:, 0, i] * w[:, 1, j] * w[:, 2, k],
                                        w[:, 0, i] * dw[:, 1, j] * w[:, 2, k],
                                        w[:, 0, i] * w[:, 1, j] * dw[:, 2, k]]
                            dweight = torch.stack(dweight, dim=1) * self.inv_dx
                            grid_v_local = grid_v[ix, iy, iz]
                            new_F_pred = new_F_pred + (grid_v_local.unsqueeze(-1) @ dweight.unsqueeze(1))

                F_pred = (self.I33 + new_F_pred * dT) @ particle_F
                loss = loss + Fn.l1_loss(F_pred, particle_F_next)
                # loss = loss + Fn.l1_loss(particle_F, particle_F_next)

        return loss / x.shape[0]

    def forward(self, x, vol, F, C, frame_interval=2, norm_fac=5, v=None):
        
        # Denormalize x & Double dt (since we sample every 2 frames) for training
        if norm_fac > 0:
            x = x * 2 + norm_fac
        dT = self.dT * frame_interval

        loss = 0

        bs = x.shape[0]
        start_t = 1 if frame_interval == 1 else 0
        end_t = x.shape[1] - 2
        M = bs * (end_t - start_t)

        # Initialize
        grid_m = torch.zeros((M, self.grid_size, self.grid_size, self.grid_size), device=self.device)
        grid_v = torch.zeros((M, self.grid_size, self.grid_size, self.grid_size, 3), device=self.device)

        particle_x = x[:, start_t:end_t].reshape(M, self.N, 3)
        # particle_x = x[:, (start_t+1):(end_t+1)].reshape(M, self.N, 3)

        if v is not None:
            # particle_v = v[:, start_t:end_t].reshape(M, self.N, 3)
            particle_v = v[:, (start_t+1):(end_t+1)].reshape(M, self.N, 3)
        else:
            particle_v = (x[:, (start_t+2):(end_t+2)] - x[:, start_t:end_t]) / (2 * dT)
        particle_v = particle_v.reshape(M, self.N, 3)

        particle_F = F[:, start_t:end_t].reshape(M, self.N, 3, 3)
        particle_F_next = F[:, (start_t+1):(end_t+1)].reshape(M, self.N, 3, 3)

        particle_C = C[:, start_t:end_t].reshape(M, self.N, 3, 3)
        # particle_C = C[:, (start_t+1):(end_t+1)].reshape(M, self.N, 3, 3)

        vol = vol.unsqueeze(1).repeat(1, end_t - start_t, 1).reshape(M, self.N)
        particle_mass = (self.density * vol).unsqueeze(-1).repeat(1, 1, 3)

        # P2G
        grid_pos = particle_x * self.inv_dx
        base_pos = (grid_pos - 0.5).int()
        fx = grid_pos - base_pos
        w = [0.5 * ((1.5 - fx) ** 2), 0.75 - ((fx - 1) ** 2), 0.5 * ((fx - 0.5) ** 2)]
        w = torch.stack(w, dim=3)
        dw = [fx - 1.5, -2 * (fx - 1), fx - 0.5]
        dw = torch.stack(dw, dim=3)

        for i in range(3):
            for j in range(3):
                for k in range(3):

                    dpos = torch.tensor([i, j, k], device=self.device).unsqueeze(0).unsqueeze(0).repeat(M, self.N, 1)
                    dpos = (dpos - fx) * self.dx
                    ix = base_pos[:, :, 0] + i
                    iy = base_pos[:, :, 1] + j
                    iz = base_pos[:, :, 2] + k

                    weight = w[:, :, 0, i] * w[:, :, 1, j] * w[:, :, 2, k]
                    dweight = [dw[:, :, 0, i] * w[:, :, 1, j] * w[:, :, 2, k],
                                w[:, :, 0, i] * dw[:, :, 1, j] * w[:, :, 2, k],
                                w[:, :, 0, i] * w[:, :, 1, j] * dw[:, :, 2, k]]
                    dweight = torch.stack(dweight, dim=2) * self.inv_dx

                    v_in_add = weight.unsqueeze(-1) * particle_mass * (particle_v + \
                        (particle_C @ dpos.unsqueeze(-1)).squeeze(-1))
                    
                    flat_idx = ix * self.grid_size * self.grid_size + iy * self.grid_size + iz
                    flat_idx = flat_idx.long()
                    
                    grid_v = grid_v.view(M, -1, 3)
                    grid_v = grid_v.scatter_add(1, flat_idx.unsqueeze(-1).repeat(1, 1, 3), v_in_add)
                    grid_v = grid_v.view(M, self.grid_size, self.grid_size, self.grid_size, 3)

                    grid_m = grid_m.view(M, -1)
                    grid_m = grid_m.scatter_add(1, flat_idx, weight * particle_mass[:, :, 0])
                    grid_m = grid_m.view(M, self.grid_size, self.grid_size, self.grid_size)
        # Grid Norm
        grid_m = torch.where(grid_m > 1e-15, grid_m, torch.ones_like(grid_m))
        grid_v = grid_v / grid_m.unsqueeze(-1)

        # G2P 
        new_F_pred = torch.zeros_like(particle_F)
        
        for i in range(3):
            for j in range(3):
                for k in range(3):

                    dpos = torch.tensor([i, j, k], device=self.device).unsqueeze(0).unsqueeze(0).repeat(M, self.N, 1).float() - fx
                    ix = base_pos[:, :, 0] + i
                    iy = base_pos[:, :, 1] + j
                    iz = base_pos[:, :, 2] + k
                    weight = w[:, :, 0, i] * w[:, :, 1, j] * w[:, :, 2, k]
                    dweight = [dw[:, :, 0, i] * w[:, :, 1, j] * w[:, :, 2, k],
                                w[:, :, 0, i] * dw[:, :, 1, j] * w[:, :, 2, k],
                                w[:, :, 0, i] * w[:, :, 1, j] * dw[:, :, 2, k]]
                    
                    dweight = torch.stack(dweight, dim=2) * self.inv_dx
                    flat_idx = ix * self.grid_size * self.grid_size + iy * self.grid_size + iz
                    flat_idx = flat_idx.long()

                    grid_v = grid_v.view(M, -1, 3)
                    grid_v_local = grid_v.gather(1, flat_idx.unsqueeze(-1).repeat(1, 1, 3))
                    new_F_pred = new_F_pred + (grid_v_local.unsqueeze(-1) @ dweight.unsqueeze(2))

        F_pred = (self.I33 + new_F_pred * dT) @ particle_F
        loss = loss + Fn.l1_loss(F_pred, particle_F_next)
        return loss * (end_t - start_t)

def loss_momentum(x, vol, force, drag_pt_num, start_frame=1, frame_interval=2, 
    norm_fac=5, v=None, density=1000, dt=0.0417):
    
    # Denormalize x & Double dt (since we sample every 2 frames) for training
    if norm_fac > 0:
        x = x * 2 + norm_fac
    dt = dt * frame_interval
    
    loss = []
    if v is not None:
        v_curr = v[:, 1:-1]
    else:
        v_pos = x[:, 1:-1] - x[:, :-2]
        v_neg = x[:, 2:] - x[:, 1:-1]
        v_curr = (v_pos + v_neg) / (2 * dt)
    
    p_int = density * vol.unsqueeze(-1).unsqueeze(1) * v_curr
    p_int = p_int.sum(dim=2)
    dt_acc = torch.arange(1, x.shape[1] - 1, device=p_int.device, dtype=p_int.dtype) * dt
    force = force.unsqueeze(1)
    drag_pt_num = drag_pt_num.unsqueeze(1)
    dt_acc = dt_acc.unsqueeze(0).unsqueeze(-1).repeat(drag_pt_num.shape[0], 1, 3)
    p_ext = force * dt_acc * drag_pt_num
    p_ext = p_ext + start_frame * force * (dt / frame_interval) * drag_pt_num
    loss = Fn.mse_loss(p_int, p_ext)
    return loss