Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,187 Bytes
4724018 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import torch
from diffusers import DDPMScheduler, DDIMScheduler
from dataset.traj_dataset import TrajDataset
from model.mdm import MDM
from model.mdm_dit import MDM_DiT
from model.spacetime import MDM_ST
import sys
from options import TrainingConfig, TestingConfig
from omegaconf import OmegaConf
from pipeline_traj import TrajPipeline
import torch
from safetensors.torch import load_file
import argparse
import os
import torch.nn as nn
import torch.nn.functional as F
from eval import create_model
from tqdm import tqdm
import numpy as np
from utils.visualization import save_pointcloud_video, save_pointcloud_json, save_threejs_html
import matplotlib.pyplot as plt
def fibonacci_sphere(n):
i = torch.arange(n, dtype=torch.float32)
phi = 2 * torch.pi * i / ((1 + 5**0.5) / 2) # golden‑angle
z = 1 - 2 * (i + 0.5) / n # uniform in [-1,1]
r_xy = (1 - z**2).sqrt()
x = r_xy * torch.cos(phi)
y = r_xy * torch.sin(phi)
return torch.stack((x, y, z), dim=1) # shape (n,3)
class Inferrer:
def __init__(self, args, device='cuda'):
self.args = args
self.device = device
self.model = create_model(args).to(device)
ckpt = load_file(args.resume, device='cpu')
self.model.load_state_dict(ckpt, strict=False)
self.model.eval().requires_grad_(False).to(device)
self.scheduler = DDIMScheduler(num_train_timesteps=1000, prediction_type='sample', clip_sample=False)
self.pipeline = TrajPipeline(model=self.model, scheduler=self.scheduler)
@torch.no_grad()
def probe_params(self, init_pc, force, motion_obs, mask, drag_point, floor_height, coeff, y, vis_dir=None, fname=None):
out = []
for e in torch.arange(4.0, 7.1, 0.5):
# for n in torch.arange(0.2, 0.45, 0.05):
# for n in [0.36]:
E, nu = torch.tensor([e], device=self.device).reshape(1, 1), torch.tensor([n], device=self.device).reshape(1, 1)
motion_pred = self.pipeline(init_pc, force, E, nu, mask, drag_point, floor_height, gravity=None, coeff=coeff, y=y, device=self.device, batch_size=1, generator=torch.Generator().manual_seed(self.args.seed), n_frames=self.args.train_dataset.n_training_frames, num_inference_steps=25)
loss = F.mse_loss(motion_pred, motion_obs.to(self.device))
out.append([loss, e, n])
# save_pointcloud_video(motion_pred.squeeze().cpu().numpy(), motion_obs.squeeze().cpu().numpy(), os.path.join(f'{e.item():03f}_{nu.item():02f}.gif'), drag_mask=mask[:1, 0, :, 0].cpu().numpy().squeeze(), vis_flag='objaverse')
out = torch.tensor(out).cpu().numpy()
print("Best E, nu: ", out[np.argmin(out[:, 0])])
plt.plot(out[:, 1], out[:, 0], marker='o', linestyle='-', linewidth=2)
plt.xlabel('E')
plt.ylabel('Loss')
plt.savefig(os.path.join(vis_dir, f'{fname}.png'))
plt.close()
return out
def forward_model(self, motion_noisy, t, init_pc, force, E, nu, mask, guidance_scale=1.0):
bsz = motion_noisy.shape[0]
null_emb = torch.tensor([1] * motion_noisy.shape[0]).to(motion_noisy.dtype)
if cfg > 1.0:
motion_noisy = torch.cat([motion_noisy] * 2)
init_pc = torch.cat([init_pc] * 2)
force = torch.cat([force] * 2)
E = torch.cat([E] * 2)
nu = torch.cat([nu] * 2)
t = torch.cat([t] * 2)
mask = torch.cat([mask] * 2)
null_emb = torch.cat([torch.tensor([0] * bsz).to(motion_noisy.dtype), null_emb])
null_emb = null_emb[:, None, None].to(self.device, dtype=motion_noisy.dtype)
model_output = self.model(motion_noisy, t, init_pc, force, E, nu, mask)
if cfg > 1.0:
model_pred_uncond, model_pred_cond = model_output.chunk(2)
model_output = model_pred_uncond + guidance_scale * (model_pred_cond - model_pred_uncond)
return model_output
def inference_model(self, init_pc, force, E, nu, mask, drag_point, floor_height, coeff,
generator,
device,
batch_size: int = 1,
num_inference_steps: int = 50,
guidance_scale=1.0,
n_frames=20
):
# Sample gaussian noise to begin loop
sample = torch.randn((batch_size, n_frames, init_pc.shape[2], 3), generator=generator).to(device)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
do_classifier_free_guidance = (guidance_scale > 1.0)
null_emb = torch.tensor([1] * batch_size).to(sample.dtype)
if do_classifier_free_guidance:
init_pc = torch.cat([init_pc] * 2)
force = torch.cat([force] * 2)
E = torch.cat([E] * 2)
nu = torch.cat([nu] * 2)
mask = torch.cat([mask] * 2)
drag_point = torch.cat([drag_point] * 2)
floor_height = torch.cat([floor_height] * 2)
null_emb = torch.cat([torch.tensor([0] * batch_size).to(sample.dtype), null_emb])
null_emb = null_emb[:, None, None].to(device)
for t in self.scheduler.timesteps:
t = torch.tensor([t] * batch_size, device=device)
sample_input = torch.cat([sample] * 2) if do_classifier_free_guidance else sample
t = torch.cat([t] * 2) if do_classifier_free_guidance else t
# 1. predict noise model_output
model_output = self.model(sample_input, t, init_pc, force, E, nu, mask, drag_point, floor_height, coeff, y=y, null_emb=null_emb)
if do_classifier_free_guidance:
model_pred_uncond, model_pred_cond = model_output.chunk(2)
model_output = model_pred_uncond + guidance_scale * (model_pred_cond - model_pred_uncond)
sample = self.scheduler.step(model_output, t[0], sample).prev_sample
return sample
def estimate_params(self, model_name, motion_obs, init_pc, force, mask, drag_point, floor_height, coeff, y, cfg=1.0, gravity=None, probe=False, num_steps=400):
device = 'cuda'
all_loss = []
if probe:
out = []
for e in torch.arange(4.0, 7.1, 0.5):
E = torch.tensor([e], device=self.device).reshape(1, 1)
motion_pred = self.pipeline(init_pc, force, E, nu, mask, drag_point, floor_height, gravity=gravity, coeff=coeff, y=y, device=self.device, batch_size=1, generator=torch.Generator().manual_seed(self.args.seed), n_frames=self.args.train_dataset.n_training_frames, num_inference_steps=25)
loss = F.mse_loss(motion_pred, motion_obs.to(self.device))
out.append([loss.item(), E.item()])
out = torch.tensor(out)
print("Best E, nu: ", out[torch.argmin(out[:, 0])])
E = nn.Parameter(torch.tensor([out[np.argmin(out[:, 0]), 1]], device=device).reshape(1, 1))
all_loss.append(out[torch.argmin(out[:, 0])])
else:
E = nn.Parameter(torch.tensor([4.5], device=device).reshape(1, 1))
# nu = nn.Parameter(torch.tensor([0.15], device=device).reshape(1, 1))
# force = nn.Parameter(torch.zeros([1, 3], device=device))
# drag_point = nn.Parameter(torch.zeros([1, 3], device=device))
optimizer = torch.optim.Adam([
{'params': E, 'lr': 1e-2, 'min': 4.0, 'max': 7.0},
# {'params': nu, 'lr': 1e-2, 'min': 0.15, 'max': 0.4},
# {'params': [force, drag_point], 'lr': 1e-2}
])
self.model.requires_grad_(True)
progress_bar = tqdm(total=num_steps)
progress_bar.set_description("Training")
Es = []
for step in range(num_steps):
optimizer.zero_grad()
noise = torch.randn_like(motion_obs, device=device)
t = torch.randint(0, self.scheduler.num_train_timesteps, (motion_obs.shape[0],), device=device)
motion_noisy = self.scheduler.add_noise(motion_obs, noise, t)
model_output = self.model(motion_noisy, t, init_pc, force, E, nu, mask, drag_point, floor_height, gravity, coeff, y=y)
loss = F.mse_loss(model_output, motion_obs)
progress_bar.update(1)
progress_bar.set_postfix({'loss': loss.item(), 'E': E.item(), 'nu': nu.item()})
loss.backward()
optimizer.step()
with torch.no_grad():
E.clamp_(4.0, 7.0)
if (step + 1) % 200 == 0:
Es.append(E.item())
if (step + 1) % 200 == 0:
motion_pred = self.pipeline(init_pc, force.detach(), E.detach(), nu.detach(), mask, drag_point.detach(), floor_height, gravity=gravity, coeff=coeff, y=y, device=self.device, batch_size=1, generator=torch.Generator().manual_seed(self.args.seed), n_frames=self.args.train_dataset.n_training_frames, num_inference_steps=25)
loss = F.mse_loss(motion_pred, motion_obs)
all_loss.append(torch.tensor([loss.item(), E.item()]))
out = torch.stack(all_loss)
print(out)
E = out[torch.argmin(out[:, 0]), 1].to(device)
Es.append(E.item())
save_pointcloud_video(motion_pred.squeeze().cpu().numpy(), motion_obs.squeeze().cpu().numpy(), os.path.join(f'./debug/v3', f'{model_name}_{E.item():03f}_{nu.item():02f}.gif'), drag_mask=mask[:1, 0, :, 0].cpu().numpy().squeeze(), vis_flag='objaverse')
return Es, nu, force, drag_point
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
args = parser.parse_args()
schema = OmegaConf.structured(TestingConfig)
cfg = OmegaConf.load(args.config)
args = OmegaConf.merge(schema, cfg)
val_dataset = TrajDataset('val', args.train_dataset)
# val_dataset = [val_dataset[i] for i in range(len(val_dataset) - 15, len(val_dataset))]
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=args.dataloader_num_workers)
inferrer = Inferrer(args)
loss = 0.0
loss_mask = 0.0
probe = True
num_steps = 400
for i, (batch, _) in enumerate(val_dataloader):
device = torch.device('cuda')
with torch.autocast("cuda", dtype=torch.bfloat16):
model_name = batch['model'][0]
motion_obs = batch['points_tgt'].to(device)
init_pc = batch['points_src'].to(device)
force = batch['force'].to(device)
E = batch['E'].to(device)
nu = batch['nu'].to(device)
mask = batch['mask'][..., :1].to(device, dtype=force.dtype)
drag_point = batch['drag_point'].to(device)
floor_height = batch['floor_height'].to(device)
coeff = batch['base_drag_coeff']
y=None if 'mat_type' not in batch else batch['mat_type'].to(device)
gravity = batch['gravity'].to(device) if 'gravity' in batch else None
print(model_name, floor_height)
# for j in range(output.shape[0]):
# save_pointcloud_video(motion_obs.squeeze().cpu().numpy(), motion_obs.squeeze().cpu().numpy(), os.path.join('./debug', f'{i:03d}_{E.item():03f}_{nu.item():02f}.gif'), drag_mask=mask[:1, 0, :, 0].cpu().numpy().squeeze(), vis_flag='objaverse')
print('GT', E, nu, drag_point, force, y)
est_E, est_nu, est_f, est_d = inferrer.estimate_params(model_name, motion_obs.to(device), init_pc, force, mask, drag_point, floor_height, coeff, y=y, cfg=1.0, gravity=gravity, probe=probe, num_steps=num_steps)
# print(f'EST_{model_name}', F.mse_loss(est_E, E), F.mse_loss(est_nu, nu), F.mse_loss(est_d[..., :3], drag_point[..., :3]), F.mse_loss(est_f, force))
est_E = ','.join([f'{e:.3f}' for e in est_E]) if isinstance(est_E, list) else est_E.item()
print(est_E)
with open(os.path.join('./debug', f'output_probe{probe}_steps{num_steps}.txt'), 'a+') as f:
f.write(f'{model_name},{E.item()},{est_E},{nu.item()},{est_nu.item()},{drag_point.cpu().numpy()},{est_d.cpu().numpy()},{force.cpu().numpy()},{est_f.cpu().numpy()}\n')
# break |