File size: 12,187 Bytes
4724018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
from diffusers import DDPMScheduler, DDIMScheduler
from dataset.traj_dataset import TrajDataset
from model.mdm import MDM
from model.mdm_dit import MDM_DiT
from model.spacetime import MDM_ST
import sys
from options import TrainingConfig, TestingConfig
from omegaconf import OmegaConf
from pipeline_traj import TrajPipeline
import torch
from safetensors.torch import load_file
import argparse
import os
import torch.nn as nn
import torch.nn.functional as F
from eval import create_model
from tqdm import tqdm
import numpy as np
from utils.visualization import save_pointcloud_video, save_pointcloud_json, save_threejs_html
import matplotlib.pyplot as plt

def fibonacci_sphere(n):
    i   = torch.arange(n, dtype=torch.float32)
    phi = 2 * torch.pi * i / ((1 + 5**0.5) / 2)   # golden‑angle
    z   = 1 - 2 * (i + 0.5) / n                   # uniform in [-1,1]
    r_xy = (1 - z**2).sqrt()
    x = r_xy * torch.cos(phi)
    y = r_xy * torch.sin(phi)
    return torch.stack((x, y, z), dim=1)          # shape (n,3)

class Inferrer:
    def __init__(self, args, device='cuda'):
        self.args = args
        self.device = device
        self.model = create_model(args).to(device)
        
        ckpt = load_file(args.resume, device='cpu')
        self.model.load_state_dict(ckpt, strict=False)
        self.model.eval().requires_grad_(False).to(device)
        self.scheduler = DDIMScheduler(num_train_timesteps=1000, prediction_type='sample', clip_sample=False)
        self.pipeline = TrajPipeline(model=self.model, scheduler=self.scheduler)

    @torch.no_grad()
    def probe_params(self, init_pc, force, motion_obs, mask, drag_point, floor_height, coeff, y, vis_dir=None, fname=None):
        out = []
        for e in torch.arange(4.0, 7.1, 0.5):
            # for n in torch.arange(0.2, 0.45, 0.05):
            # for n in [0.36]:
                E, nu = torch.tensor([e], device=self.device).reshape(1, 1), torch.tensor([n], device=self.device).reshape(1, 1)
                motion_pred = self.pipeline(init_pc, force, E, nu, mask, drag_point, floor_height, gravity=None, coeff=coeff, y=y, device=self.device, batch_size=1, generator=torch.Generator().manual_seed(self.args.seed), n_frames=self.args.train_dataset.n_training_frames, num_inference_steps=25)
                loss = F.mse_loss(motion_pred, motion_obs.to(self.device))
                out.append([loss, e, n])
                # save_pointcloud_video(motion_pred.squeeze().cpu().numpy(), motion_obs.squeeze().cpu().numpy(), os.path.join(f'{e.item():03f}_{nu.item():02f}.gif'), drag_mask=mask[:1, 0, :, 0].cpu().numpy().squeeze(), vis_flag='objaverse')
        out = torch.tensor(out).cpu().numpy()
        print("Best E, nu: ", out[np.argmin(out[:, 0])])
        plt.plot(out[:, 1], out[:, 0], marker='o', linestyle='-', linewidth=2)
        plt.xlabel('E')
        plt.ylabel('Loss')
        plt.savefig(os.path.join(vis_dir, f'{fname}.png'))
        plt.close()
        
        return out

    def forward_model(self, motion_noisy, t, init_pc, force, E, nu, mask, guidance_scale=1.0):
        bsz = motion_noisy.shape[0]
        null_emb = torch.tensor([1] * motion_noisy.shape[0]).to(motion_noisy.dtype)
        if cfg > 1.0:
            motion_noisy = torch.cat([motion_noisy] * 2)
            init_pc = torch.cat([init_pc] * 2)
            force = torch.cat([force] * 2)
            E = torch.cat([E] * 2)
            nu = torch.cat([nu] * 2)
            t = torch.cat([t] * 2)
            mask = torch.cat([mask] * 2)
            null_emb = torch.cat([torch.tensor([0] * bsz).to(motion_noisy.dtype), null_emb])
        null_emb = null_emb[:, None, None].to(self.device, dtype=motion_noisy.dtype)
        model_output = self.model(motion_noisy, t, init_pc, force, E, nu, mask)
        if cfg > 1.0:
            model_pred_uncond, model_pred_cond = model_output.chunk(2)
            model_output = model_pred_uncond + guidance_scale * (model_pred_cond - model_pred_uncond)
        return model_output

    def inference_model(self, init_pc, force, E, nu, mask, drag_point, floor_height, coeff,
        generator, 
        device, 
        batch_size: int = 1, 
        num_inference_steps: int = 50, 
        guidance_scale=1.0, 
        n_frames=20
    ):
        # Sample gaussian noise to begin loop
        sample = torch.randn((batch_size, n_frames, init_pc.shape[2], 3), generator=generator).to(device)
        # set step values
        self.scheduler.set_timesteps(num_inference_steps)
        do_classifier_free_guidance = (guidance_scale > 1.0)
        null_emb = torch.tensor([1] * batch_size).to(sample.dtype)
        if do_classifier_free_guidance:
            init_pc = torch.cat([init_pc] * 2)
            force = torch.cat([force] * 2)
            E = torch.cat([E] * 2)
            nu = torch.cat([nu] * 2)
            mask = torch.cat([mask] * 2)
            drag_point = torch.cat([drag_point] * 2)
            floor_height = torch.cat([floor_height] * 2)
            null_emb = torch.cat([torch.tensor([0] * batch_size).to(sample.dtype), null_emb])
        null_emb = null_emb[:, None, None].to(device)
        for t in self.scheduler.timesteps:
            t = torch.tensor([t] * batch_size, device=device)
            sample_input = torch.cat([sample] * 2) if do_classifier_free_guidance else sample
            t = torch.cat([t] * 2) if do_classifier_free_guidance else t
            # 1. predict noise model_output
            model_output = self.model(sample_input, t, init_pc, force, E, nu, mask, drag_point, floor_height, coeff, y=y, null_emb=null_emb)
            if do_classifier_free_guidance:
                model_pred_uncond, model_pred_cond = model_output.chunk(2)
                model_output = model_pred_uncond + guidance_scale * (model_pred_cond - model_pred_uncond)
            sample = self.scheduler.step(model_output, t[0], sample).prev_sample
        return sample

    def estimate_params(self, model_name, motion_obs, init_pc, force, mask, drag_point, floor_height, coeff, y, cfg=1.0, gravity=None, probe=False, num_steps=400):
        device = 'cuda'
        
        all_loss = []
        if probe:
            out = []
            for e in torch.arange(4.0, 7.1, 0.5):
                E = torch.tensor([e], device=self.device).reshape(1, 1)
                motion_pred = self.pipeline(init_pc, force, E, nu, mask, drag_point, floor_height, gravity=gravity, coeff=coeff, y=y, device=self.device, batch_size=1, generator=torch.Generator().manual_seed(self.args.seed), n_frames=self.args.train_dataset.n_training_frames, num_inference_steps=25)
                loss = F.mse_loss(motion_pred, motion_obs.to(self.device))
                out.append([loss.item(), E.item()])
            out = torch.tensor(out)
            print("Best E, nu: ", out[torch.argmin(out[:, 0])])
            E = nn.Parameter(torch.tensor([out[np.argmin(out[:, 0]), 1]], device=device).reshape(1, 1))
            all_loss.append(out[torch.argmin(out[:, 0])])
        else:
            E = nn.Parameter(torch.tensor([4.5], device=device).reshape(1, 1))
        # nu = nn.Parameter(torch.tensor([0.15], device=device).reshape(1, 1))
        # force = nn.Parameter(torch.zeros([1, 3], device=device))
        # drag_point = nn.Parameter(torch.zeros([1, 3], device=device))
        optimizer = torch.optim.Adam([
            {'params': E, 'lr': 1e-2, 'min': 4.0, 'max': 7.0},
            # {'params': nu, 'lr': 1e-2, 'min': 0.15, 'max': 0.4},
            # {'params': [force, drag_point], 'lr': 1e-2}
        ])
        self.model.requires_grad_(True)
        progress_bar = tqdm(total=num_steps)
        progress_bar.set_description("Training")
        Es = []
        for step in range(num_steps):
            optimizer.zero_grad()
            noise = torch.randn_like(motion_obs, device=device)
            t = torch.randint(0, self.scheduler.num_train_timesteps, (motion_obs.shape[0],), device=device)
            motion_noisy = self.scheduler.add_noise(motion_obs, noise, t)
            model_output = self.model(motion_noisy, t, init_pc, force, E, nu, mask, drag_point, floor_height, gravity, coeff, y=y)
            loss = F.mse_loss(model_output, motion_obs)
            progress_bar.update(1)
            progress_bar.set_postfix({'loss': loss.item(), 'E': E.item(), 'nu': nu.item()})
            loss.backward()
            optimizer.step()

            with torch.no_grad():
                E.clamp_(4.0, 7.0)
            
            if (step + 1) % 200 == 0:
                Es.append(E.item())

            if (step + 1) % 200 == 0:
                motion_pred = self.pipeline(init_pc, force.detach(), E.detach(), nu.detach(), mask, drag_point.detach(), floor_height, gravity=gravity, coeff=coeff, y=y, device=self.device, batch_size=1, generator=torch.Generator().manual_seed(self.args.seed), n_frames=self.args.train_dataset.n_training_frames, num_inference_steps=25)
                loss = F.mse_loss(motion_pred, motion_obs)
                all_loss.append(torch.tensor([loss.item(), E.item()]))
        out = torch.stack(all_loss)
        print(out)
        E = out[torch.argmin(out[:, 0]), 1].to(device)
        Es.append(E.item())
        save_pointcloud_video(motion_pred.squeeze().cpu().numpy(), motion_obs.squeeze().cpu().numpy(), os.path.join(f'./debug/v3', f'{model_name}_{E.item():03f}_{nu.item():02f}.gif'), drag_mask=mask[:1, 0, :, 0].cpu().numpy().squeeze(), vis_flag='objaverse')
        return Es, nu, force, drag_point

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, required=True)
    args = parser.parse_args()
    schema = OmegaConf.structured(TestingConfig)
    cfg = OmegaConf.load(args.config)
    args = OmegaConf.merge(schema, cfg)

    val_dataset = TrajDataset('val', args.train_dataset)
    # val_dataset = [val_dataset[i] for i in range(len(val_dataset) - 15, len(val_dataset))]
    val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=args.dataloader_num_workers)

    inferrer = Inferrer(args)
    loss = 0.0
    loss_mask = 0.0
    probe = True
    num_steps = 400
    for i, (batch, _) in enumerate(val_dataloader):
        device = torch.device('cuda')
        with torch.autocast("cuda", dtype=torch.bfloat16):
            model_name = batch['model'][0]
            motion_obs = batch['points_tgt'].to(device)
            init_pc = batch['points_src'].to(device)
            force = batch['force'].to(device)
            E = batch['E'].to(device)
            nu = batch['nu'].to(device)
            mask = batch['mask'][..., :1].to(device, dtype=force.dtype)
            drag_point = batch['drag_point'].to(device)
            floor_height = batch['floor_height'].to(device)
            coeff = batch['base_drag_coeff']
            y=None if 'mat_type' not in batch else batch['mat_type'].to(device)
            gravity = batch['gravity'].to(device) if 'gravity' in batch else None
            print(model_name, floor_height)
            # for j in range(output.shape[0]):
            # save_pointcloud_video(motion_obs.squeeze().cpu().numpy(), motion_obs.squeeze().cpu().numpy(), os.path.join('./debug', f'{i:03d}_{E.item():03f}_{nu.item():02f}.gif'), drag_mask=mask[:1, 0, :, 0].cpu().numpy().squeeze(), vis_flag='objaverse')

            print('GT', E, nu, drag_point, force, y)

            est_E, est_nu, est_f, est_d = inferrer.estimate_params(model_name, motion_obs.to(device), init_pc, force, mask, drag_point, floor_height, coeff, y=y, cfg=1.0, gravity=gravity, probe=probe, num_steps=num_steps)
            # print(f'EST_{model_name}', F.mse_loss(est_E, E), F.mse_loss(est_nu, nu), F.mse_loss(est_d[..., :3], drag_point[..., :3]), F.mse_loss(est_f, force))
            est_E = ','.join([f'{e:.3f}' for e in est_E]) if isinstance(est_E, list) else est_E.item()
            print(est_E)
            with open(os.path.join('./debug', f'output_probe{probe}_steps{num_steps}.txt'), 'a+') as f:
                f.write(f'{model_name},{E.item()},{est_E},{nu.item()},{est_nu.item()},{drag_point.cpu().numpy()},{est_d.cpu().numpy()},{force.cpu().numpy()},{est_f.cpu().numpy()}\n')
        # break