import os import sys import math from tqdm import tqdm from PIL import Image, ImageDraw project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # try: # sys.path.append(os.path.join(project_root, "submodules/MoGe")) # os.environ["TOKENIZERS_PARALLELISM"] = "false" # except: # print("Warning: MoGe not found, motion transfer will not be applied") import torch import numpy as np from PIL import Image import torchvision.transforms as transforms from diffusers import CogVideoXDPMScheduler from diffusers.utils import export_to_video, load_image, load_video # from models.spatracker.predictor import SpaTrackerPredictor # from models.spatracker.utils.visualizer import Visualizer from models.cogvideox_tracking import CogVideoXImageToVideoPipelineTracking # from submodules.MoGe.moge.model import MoGeModel from image_gen_aux import DepthPreprocessor from moviepy.editor import ImageSequenceClip from typing import Any, Dict, Optional, Tuple, Union, List, Callable class DiffusionAsShaderPipeline: def __init__(self, gpu_id=0, output_dir='outputs'): """Initialize MotionTransfer class Args: gpu_id (int): GPU device ID output_dir (str): Output directory path """ # video parameters self.max_depth = 65.0 self.fps = 8 # camera parameters self.camera_motion=None self.fov=55 # device self.device = f"cuda" # files self.output_dir = output_dir os.makedirs(output_dir, exist_ok=True) # Initialize transform self.transform = transforms.Compose([ transforms.Resize((480, 720)), transforms.ToTensor() ]) @torch.no_grad() def _infer( self, prompt: str, model_path: str, tracking_tensor: torch.Tensor = None, image_tensor: torch.Tensor = None, # [C,H,W] in range [0,1] output_path: str = "./output.mp4", num_inference_steps: int = 50, guidance_scale: float = 6.0, num_videos_per_prompt: int = 1, dtype: torch.dtype = torch.bfloat16, fps: int = 24, seed: int = 0, coarse_video: Optional[torch.Tensor] = None, start_noise_t: Optional[int] = 10 ): """ Generates a video based on the given prompt and saves it to the specified path. Parameters: - prompt (str): The description of the video to be generated. - model_path (str): The path of the pre-trained model to be used. - tracking_tensor (torch.Tensor): Tracking video tensor [T, C, H, W] in range [0,1] - image_tensor (torch.Tensor): Input image tensor [C, H, W] in range [0,1] - output_path (str): The path where the generated video will be saved. - num_inference_steps (int): Number of steps for the inference process. - guidance_scale (float): The scale for classifier-free guidance. - num_videos_per_prompt (int): Number of videos to generate per prompt. - dtype (torch.dtype): The data type for computation. - seed (int): The seed for reproducibility. """ pipe = CogVideoXImageToVideoPipelineTracking.from_pretrained(model_path, torch_dtype=dtype) # Convert tensor to PIL Image image_np = (image_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8) image = Image.fromarray(image_np) height, width = image.height, image.width pipe.transformer.eval() pipe.text_encoder.eval() pipe.vae.eval() # Process tracking tensor tracking_maps = tracking_tensor.float() # [T, C, H, W] tracking_maps = tracking_maps.to(device=self.device, dtype=dtype) tracking_first_frame = tracking_maps[0:1] # Get first frame as [1, C, H, W] height, width = tracking_first_frame.shape[2], tracking_first_frame.shape[3] if coarse_video is not None: coarse_video = coarse_video.to(device=self.device, dtype=dtype).unsqueeze(0).permute(0, 2, 1, 3, 4) # 2. Set Scheduler. pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") pipe.to(self.device, dtype=dtype) # pipe.enable_sequential_cpu_offload() pipe.vae.enable_slicing() pipe.vae.enable_tiling() pipe.transformer.eval() pipe.text_encoder.eval() pipe.vae.eval() pipe.transformer.gradient_checkpointing = False print("Encoding tracking maps") tracking_maps = tracking_maps.unsqueeze(0) # [B, T, C, H, W] tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, C, T, H, W] tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, F, C, H, W] # 4. Generate the video frames based on the prompt. video_generate = pipe( prompt=prompt, negative_prompt="The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.", image=image, num_videos_per_prompt=num_videos_per_prompt, num_inference_steps=num_inference_steps, num_frames=49, use_dynamic_cfg=True, guidance_scale=guidance_scale, generator=torch.Generator().manual_seed(seed), tracking_maps=tracking_maps, tracking_image=tracking_first_frame, height=height, width=width, coarse_video=coarse_video, start_noise_t=start_noise_t ).frames[0] # 5. Export the generated frames to a video file. fps must be 8 for original video. output_path = output_path if output_path else f"result.mp4" os.makedirs(os.path.dirname(output_path), exist_ok=True) export_to_video(video_generate, output_path, fps=fps) #========== camera parameters ==========# def _set_camera_motion(self, camera_motion): self.camera_motion = camera_motion def _get_intr(self, fov, H=480, W=720): fov_rad = math.radians(fov) focal_length = (W / 2) / math.tan(fov_rad / 2) cx = W / 2 cy = H / 2 intr = torch.tensor([ [focal_length, 0, cx], [0, focal_length, cy], [0, 0, 1] ], dtype=torch.float32) return intr def _apply_poses(self, pts, intr, poses): """ Args: pts (torch.Tensor): pointclouds coordinates [T, N, 3] intr (torch.Tensor): camera intrinsics [T, 3, 3] poses (numpy.ndarray): camera poses [T, 4, 4] """ poses = torch.from_numpy(poses).float().to(self.device) T, N, _ = pts.shape ones = torch.ones(T, N, 1, device=self.device, dtype=torch.float) pts_hom = torch.cat([pts[:, :, :2], ones], dim=-1) # (T, N, 3) pts_cam = torch.bmm(pts_hom, torch.linalg.inv(intr).transpose(1, 2)) # (T, N, 3) pts_cam[:,:, :3] /= pts[:, :, 2:3] # to homogeneous pts_cam = torch.cat([pts_cam, ones], dim=-1) # (T, N, 4) if poses.shape[0] == 1: poses = poses.repeat(T, 1, 1) elif poses.shape[0] != T: raise ValueError(f"Poses length ({poses.shape[0]}) must match sequence length ({T})") pts_world = torch.bmm(pts_cam, poses.transpose(1, 2))[:, :, :3] # (T, N, 3) pts_proj = torch.bmm(pts_world, intr.transpose(1, 2)) # (T, N, 3) pts_proj[:, :, :2] /= pts_proj[:, :, 2:3] return pts_proj def apply_traj_on_tracking(self, pred_tracks, camera_motion=None, fov=55, frame_num=49): intr = self._get_intr(fov).unsqueeze(0).repeat(frame_num, 1, 1).to(self.device) tracking_pts = self._apply_poses(pred_tracks.squeeze(), intr, camera_motion).unsqueeze(0) return tracking_pts ##============= SpatialTracker =============## def generate_tracking_spatracker(self, video_tensor, density=70): """Generate tracking video Args: video_tensor (torch.Tensor): Input video tensor Returns: str: Path to tracking video """ print("Loading tracking models...") # Load tracking model tracker = SpaTrackerPredictor( checkpoint=os.path.join(project_root, 'checkpoints/spaT_final.pth'), interp_shape=(384, 576), seq_length=12 ).to(self.device) # Load depth model self.depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti") self.depth_preprocessor.to(self.device) try: video = video_tensor.unsqueeze(0).to(self.device) video_depths = [] for i in range(video_tensor.shape[0]): frame = (video_tensor[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) depth = self.depth_preprocessor(Image.fromarray(frame))[0] depth_tensor = transforms.ToTensor()(depth) # [1, H, W] video_depths.append(depth_tensor) video_depth = torch.stack(video_depths, dim=0).to(self.device) # print("Video depth shape:", video_depth.shape) segm_mask = np.ones((480, 720), dtype=np.uint8) pred_tracks, pred_visibility, T_Firsts = tracker( video * 255, video_depth=video_depth, grid_size=density, backward_tracking=False, depth_predictor=None, grid_query_frame=0, segm_mask=torch.from_numpy(segm_mask)[None, None].to(self.device), wind_length=12, progressive_tracking=False ) return pred_tracks, pred_visibility, T_Firsts finally: # Clean up GPU memory del tracker, self.depth_preprocessor torch.cuda.empty_cache() def visualize_tracking_spatracker(self, video, pred_tracks, pred_visibility, T_Firsts, save_tracking=True): video = video.unsqueeze(0).to(self.device) vis = Visualizer(save_dir=self.output_dir, grayscale=False, fps=24, pad_value=0) msk_query = (T_Firsts == 0) pred_tracks = pred_tracks[:,:,msk_query.squeeze()] pred_visibility = pred_visibility[:,:,msk_query.squeeze()] tracking_video = vis.visualize(video=video, tracks=pred_tracks, visibility=pred_visibility, save_video=False, filename="temp") tracking_video = tracking_video.squeeze(0) # [T, C, H, W] wide_list = list(tracking_video.unbind(0)) wide_list = [wide.permute(1, 2, 0).cpu().numpy() for wide in wide_list] clip = ImageSequenceClip(wide_list, fps=self.fps) tracking_path = None if save_tracking: try: tracking_path = os.path.join(self.output_dir, "tracking_video.mp4") clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None) print(f"Video saved to {tracking_path}") except Exception as e: print(f"Warning: Failed to save tracking video: {e}") tracking_path = None # Convert tracking_video back to tensor in range [0,1] tracking_frames = np.array(list(clip.iter_frames())) / 255.0 tracking_video = torch.from_numpy(tracking_frames).permute(0, 3, 1, 2).float() return tracking_path, tracking_video ##============= MoGe =============## def valid_mask(self, pixels, W, H): """Check if pixels are within valid image bounds Args: pixels (numpy.ndarray): Pixel coordinates of shape [N, 2] W (int): Image width H (int): Image height Returns: numpy.ndarray: Boolean mask of valid pixels """ return ((pixels[:, 0] >= 0) & (pixels[:, 0] < W) & (pixels[:, 1] > 0) & \ (pixels[:, 1] < H)) def sort_points_by_depth(self, points, depths): """Sort points by depth values Args: points (numpy.ndarray): Points array of shape [N, 2] depths (numpy.ndarray): Depth values of shape [N] Returns: tuple: (sorted_points, sorted_depths, sort_index) """ # Combine points and depths into a single array for sorting combined = np.hstack((points, depths[:, None])) # Nx3 (points + depth) # Sort by depth (last column) in descending order sort_index = combined[:, -1].argsort()[::-1] sorted_combined = combined[sort_index] # Split back into points and depths sorted_points = sorted_combined[:, :-1] sorted_depths = sorted_combined[:, -1] return sorted_points, sorted_depths, sort_index def draw_rectangle(self, rgb, coord, side_length, color=(255, 0, 0)): """Draw a rectangle on the image Args: rgb (PIL.Image): Image to draw on coord (tuple): Center coordinates (x, y) side_length (int): Length of rectangle sides color (tuple): RGB color tuple """ draw = ImageDraw.Draw(rgb) # Calculate the bounding box of the rectangle left_up_point = (coord[0] - side_length//2, coord[1] - side_length//2) right_down_point = (coord[0] + side_length//2, coord[1] + side_length//2) color = tuple(list(color)) draw.rectangle( [left_up_point, right_down_point], fill=tuple(color), outline=tuple(color), ) def visualize_tracking_moge(self, points, mask, save_tracking=True): """Visualize tracking results from MoGe model Args: points (numpy.ndarray): Points array of shape [T, H, W, 3] mask (numpy.ndarray): Binary mask of shape [H, W] save_tracking (bool): Whether to save tracking video Returns: tuple: (tracking_path, tracking_video) - tracking_path (str): Path to saved tracking video, None if save_tracking is False - tracking_video (torch.Tensor): Tracking visualization tensor of shape [T, C, H, W] in range [0,1] """ # Create color array T, H, W, _ = points.shape colors = np.zeros((H, W, 3), dtype=np.uint8) # Set R channel - based on x coordinates (smaller on the left) colors[:, :, 0] = np.tile(np.linspace(0, 255, W), (H, 1)) # Set G channel - based on y coordinates (smaller on the top) colors[:, :, 1] = np.tile(np.linspace(0, 255, H), (W, 1)).T # Set B channel - based on depth z_values = points[0, :, :, 2] # get z values inv_z = 1 / z_values # calculate 1/z # Calculate 2% and 98% percentiles p2 = np.percentile(inv_z, 2) p98 = np.percentile(inv_z, 98) # Normalize to [0,1] range normalized_z = np.clip((inv_z - p2) / (p98 - p2), 0, 1) colors[:, :, 2] = (normalized_z * 255).astype(np.uint8) colors = colors.astype(np.uint8) # colors = colors[mask] # points = points * mask[None, :, :, None] points = points.reshape(T, -1, 3) colors = colors.reshape(-1, 3) # Initialize list to store frames frames = [] for i, pts_i in enumerate(tqdm(points)): pixels, depths = pts_i[..., :2], pts_i[..., 2] pixels[..., 0] = pixels[..., 0] * W pixels[..., 1] = pixels[..., 1] * H pixels = pixels.astype(int) valid = self.valid_mask(pixels, W, H) frame_rgb = colors[valid] pixels = pixels[valid] depths = depths[valid] img = Image.fromarray(np.uint8(np.zeros([H, W, 3])), mode="RGB") sorted_pixels, _, sort_index = self.sort_points_by_depth(pixels, depths) step = 1 sorted_pixels = sorted_pixels[::step] sorted_rgb = frame_rgb[sort_index][::step] for j in range(sorted_pixels.shape[0]): self.draw_rectangle( img, coord=(sorted_pixels[j, 0], sorted_pixels[j, 1]), side_length=2, color=sorted_rgb[j], ) frames.append(np.array(img)) # Convert frames to video tensor in range [0,1] tracking_video = torch.from_numpy(np.stack(frames)).permute(0, 3, 1, 2).float() / 255.0 tracking_path = None if save_tracking: try: tracking_path = os.path.join(self.output_dir, "tracking_video_moge.mp4") # Convert back to uint8 for saving uint8_frames = [frame.astype(np.uint8) for frame in frames] clip = ImageSequenceClip(uint8_frames, fps=self.fps) clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None) print(f"Video saved to {tracking_path}") except Exception as e: print(f"Warning: Failed to save tracking video: {e}") tracking_path = None return tracking_path, tracking_video def apply_tracking(self, video_tensor, fps=8, tracking_tensor=None, img_cond_tensor=None, prompt=None, checkpoint_path=None, coarse_video=None, start_noise_t=0, seed=0): """Generate final video with motion transfer Args: video_tensor (torch.Tensor): Input video tensor [T,C,H,W] fps (float): Input video FPS tracking_tensor (torch.Tensor): Tracking video tensor [T,C,H,W] image_tensor (torch.Tensor): First frame tensor [C,H,W] to use for generation prompt (str): Generation prompt checkpoint_path (str): Path to model checkpoint """ self.fps = fps # Use first frame if no image provided if img_cond_tensor is None: img_cond_tensor = video_tensor[0] # Generate final video final_output = os.path.join(os.path.abspath(self.output_dir), "result.mp4" if coarse_video is None else f"result_{start_noise_t}.mp4") self._infer( prompt=prompt, model_path=checkpoint_path, tracking_tensor=tracking_tensor, image_tensor=img_cond_tensor, output_path=final_output, num_inference_steps=50, guidance_scale=6.0, dtype=torch.bfloat16, fps=self.fps, coarse_video=coarse_video, start_noise_t=start_noise_t, seed=seed ) print(f"Final video generated successfully at: {final_output}") def _set_object_motion(self, motion_type): """Set object motion type Args: motion_type (str): Motion direction ('up', 'down', 'left', 'right') """ self.object_motion = motion_type class CameraMotionGenerator: def __init__(self, motion_type, frame_num=49, H=480, W=720, fx=None, fy=None, fov=55, device='cuda'): self.motion_type = motion_type self.frame_num = frame_num self.fov = fov self.device = device self.W = W self.H = H self.intr = torch.tensor([ [0, 0, W / 2], [0, 0, H / 2], [0, 0, 1] ], dtype=torch.float32, device=device) # if fx, fy not provided if not fx or not fy: fov_rad = math.radians(fov) fx = fy = (W / 2) / math.tan(fov_rad / 2) self.intr[0, 0] = fx self.intr[1, 1] = fy def _apply_poses(self, pts, poses): """ Args: pts (torch.Tensor): pointclouds coordinates [T, N, 3] intr (torch.Tensor): camera intrinsics [T, 3, 3] poses (numpy.ndarray): camera poses [T, 4, 4] """ if isinstance(poses, np.ndarray): poses = torch.from_numpy(poses) intr = self.intr.unsqueeze(0).repeat(self.frame_num, 1, 1).to(torch.float) T, N, _ = pts.shape ones = torch.ones(T, N, 1, device=self.device, dtype=torch.float) pts_hom = torch.cat([pts[:, :, :2], ones], dim=-1) # (T, N, 3) pts_cam = torch.bmm(pts_hom, torch.linalg.inv(intr).transpose(1, 2)) # (T, N, 3) pts_cam[:,:, :3] *= pts[:, :, 2:3] # to homogeneous pts_cam = torch.cat([pts_cam, ones], dim=-1) # (T, N, 4) if poses.shape[0] == 1: poses = poses.repeat(T, 1, 1) elif poses.shape[0] != T: raise ValueError(f"Poses length ({poses.shape[0]}) must match sequence length ({T})") poses = poses.to(torch.float).to(self.device) pts_world = torch.bmm(pts_cam, poses.transpose(1, 2))[:, :, :3] # (T, N, 3) pts_proj = torch.bmm(pts_world, intr.transpose(1, 2)) # (T, N, 3) pts_proj[:, :, :2] /= pts_proj[:, :, 2:3] return pts_proj def w2s(self, pts, poses): if isinstance(poses, np.ndarray): poses = torch.from_numpy(poses) assert poses.shape[0] == self.frame_num poses = poses.to(torch.float32).to(self.device) T, N, _ = pts.shape # (T, N, 3) intr = self.intr.unsqueeze(0).repeat(self.frame_num, 1, 1) # Step 1: 扩展点的维度,使其变成 (T, N, 4),最后一维填充1 (齐次坐标) ones = torch.ones((T, N, 1), device=self.device, dtype=pts.dtype) points_world_h = torch.cat([pts, ones], dim=-1) points_camera_h = torch.bmm(poses, points_world_h.permute(0, 2, 1)) points_camera = points_camera_h[:, :3, :].permute(0, 2, 1) points_image_h = torch.bmm(points_camera, intr.permute(0, 2, 1)) uv = points_image_h[:, :, :2] / points_image_h[:, :, 2:3] # Step 5: 提取深度 (Z) 并拼接 depth = points_camera[:, :, 2:3] # (T, N, 1) uvd = torch.cat([uv, depth], dim=-1) # (T, N, 3) return uvd # 屏幕坐标 + 深度 (T, N, 3) def apply_motion_on_pts(self, pts, camera_motion): tracking_pts = self._apply_poses(pts.squeeze(), camera_motion).unsqueeze(0) return tracking_pts def set_intr(self, K): if isinstance(K, np.ndarray): K = torch.from_numpy(K) self.intr = K.to(self.device) def rot_poses(self, angle, axis='y'): """ pts (torch.Tensor): [T, N, 3] angle (int): angle of rotation (degree) """ angle_rad = math.radians(angle) angles = torch.linspace(0, angle_rad, self.frame_num) rot_mats = torch.zeros(self.frame_num, 4, 4) for i, theta in enumerate(angles): cos_theta = torch.cos(theta) sin_theta = torch.sin(theta) if axis == 'x': rot_mats[i] = torch.tensor([ [1, 0, 0, 0], [0, cos_theta, -sin_theta, 0], [0, sin_theta, cos_theta, 0], [0, 0, 0, 1] ], dtype=torch.float32) elif axis == 'y': rot_mats[i] = torch.tensor([ [cos_theta, 0, sin_theta, 0], [0, 1, 0, 0], [-sin_theta, 0, cos_theta, 0], [0, 0, 0, 1] ], dtype=torch.float32) elif axis == 'z': rot_mats[i] = torch.tensor([ [cos_theta, -sin_theta, 0, 0], [sin_theta, cos_theta, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], dtype=torch.float32) else: raise ValueError("Invalid axis value. Choose 'x', 'y', or 'z'.") return rot_mats.to(self.device) def trans_poses(self, dx, dy, dz): """ params: - dx: float, displacement along x axis。 - dy: float, displacement along y axis。 - dz: float, displacement along z axis。 ret: - matrices: torch.Tensor """ trans_mats = torch.eye(4).unsqueeze(0).repeat(self.frame_num, 1, 1) # (n, 4, 4) delta_x = dx / (self.frame_num - 1) delta_y = dy / (self.frame_num - 1) delta_z = dz / (self.frame_num - 1) for i in range(self.frame_num): trans_mats[i, 0, 3] = i * delta_x trans_mats[i, 1, 3] = i * delta_y trans_mats[i, 2, 3] = i * delta_z return trans_mats.to(self.device) def _look_at(self, camera_position, target_position): # look at direction direction = target_position - camera_position direction /= np.linalg.norm(direction) # calculate rotation matrix up = np.array([0, 1, 0]) right = np.cross(up, direction) right /= np.linalg.norm(right) up = np.cross(direction, right) rotation_matrix = np.vstack([right, up, direction]) rotation_matrix = np.linalg.inv(rotation_matrix) return rotation_matrix def spiral_poses(self, radius, forward_ratio = 0.5, backward_ratio = 0.5, rotation_times = 0.1, look_at_times = 0.5): """Generate spiral camera poses Args: radius (float): Base radius of the spiral forward_ratio (float): Scale factor for forward motion backward_ratio (float): Scale factor for backward motion rotation_times (float): Number of rotations to complete look_at_times (float): Scale factor for look-at point distance Returns: torch.Tensor: Camera poses of shape [num_frames, 4, 4] """ # Generate spiral trajectory t = np.linspace(0, 1, self.frame_num) r = np.sin(np.pi * t) * radius * rotation_times theta = 2 * np.pi * t # Calculate camera positions # Limit y motion for better floor/sky view y = r * np.cos(theta) * 0.3 x = r * np.sin(theta) z = -r z[z < 0] *= forward_ratio z[z > 0] *= backward_ratio # Set look-at target target_pos = np.array([0, 0, radius * look_at_times]) cam_pos = np.vstack([x, y, z]).T cam_poses = [] for pos in cam_pos: rot_mat = self._look_at(pos, target_pos) trans_mat = np.eye(4) trans_mat[:3, :3] = rot_mat trans_mat[:3, 3] = pos cam_poses.append(trans_mat[None]) camera_poses = np.concatenate(cam_poses, axis=0) return torch.from_numpy(camera_poses).to(self.device) def rot(self, pts, angle, axis): """ pts: torch.Tensor, (T, N, 2) """ rot_mats = self.rot_poses(angle, axis) pts = self.apply_motion_on_pts(pts, rot_mats) return pts def trans(self, pts, dx, dy, dz): if pts.shape[-1] != 3: raise ValueError("points should be in the 3d coordinate.") trans_mats = self.trans_poses(dx, dy, dz) pts = self.apply_motion_on_pts(pts, trans_mats) return pts def spiral(self, pts, radius): spiral_poses = self.spiral_poses(radius) pts = self.apply_motion_on_pts(pts, spiral_poses) return pts def get_default_motion(self): if self.motion_type == 'trans': motion = self.trans_poses(0.1, 0, 0) elif self.motion_type == 'spiral': motion = self.spiral_poses(1) elif self.motion_type == 'rot': motion = self.rot_poses(-25, 'y') else: raise ValueError(f'camera_motion must be in [trans, spiral, rot], but get {self.motion_type}.') return motion class ObjectMotionGenerator: def __init__(self, device="cuda:0"): """Initialize ObjectMotionGenerator Args: device (str): Device to run on """ self.device = device self.num_frames = 49 def _get_points_in_mask(self, pred_tracks, mask): """Get points that fall within the mask in first frame Args: pred_tracks (torch.Tensor): [num_frames, num_points, 3] mask (torch.Tensor): [H, W] binary mask Returns: torch.Tensor: Boolean mask of selected points [num_points] """ first_frame_points = pred_tracks[0] # [num_points, 3] xy_points = first_frame_points[:, :2] # [num_points, 2] # Convert xy coordinates to pixel indices xy_pixels = xy_points.round().long() # Convert to integer pixel coordinates # Clamp coordinates to valid range xy_pixels[:, 0].clamp_(0, mask.shape[1] - 1) # x coordinates xy_pixels[:, 1].clamp_(0, mask.shape[0] - 1) # y coordinates # Get mask values at point locations points_in_mask = mask[xy_pixels[:, 1], xy_pixels[:, 0]] # Index using y, x order return points_in_mask def generate_motion(self, mask, motion_type, distance, num_frames=49): """Generate motion dictionary for the given parameters Args: mask (torch.Tensor): [H, W] binary mask motion_type (str): Motion direction ('up', 'down', 'left', 'right') distance (float): Total distance to move num_frames (int): Number of frames Returns: dict: Motion dictionary containing: - mask (torch.Tensor): Binary mask - motions (torch.Tensor): Per-frame motion vectors [num_frames, 4, 4] """ self.num_frames = num_frames # Define motion template vectors template = { 'up': torch.tensor([0, -1, 0]), 'down': torch.tensor([0, 1, 0]), 'left': torch.tensor([-1, 0, 0]), 'right': torch.tensor([1, 0, 0]), 'front': torch.tensor([0, 0, 1]), 'back': torch.tensor([0, 0, -1]) } if motion_type not in template: raise ValueError(f"Unknown motion type: {motion_type}") # Move mask to device mask = mask.to(self.device) # Generate per-frame motion matrices motions = [] base_vec = template[motion_type].to(self.device) * distance for frame_idx in range(num_frames): # Calculate interpolation factor (0 to 1) t = frame_idx / (num_frames - 1) # Create motion matrix for current frame current_motion = torch.eye(4, device=self.device) current_motion[:3, 3] = base_vec * t motions.append(current_motion) motions = torch.stack(motions) # [num_frames, 4, 4] return { 'mask': mask, 'motions': motions } def apply_motion(self, pred_tracks, motion_dict, tracking_method="spatracker"): """Apply motion to selected points Args: pred_tracks (torch.Tensor): [num_frames, num_points, 3] for spatracker or [T, H, W, 3] for moge motion_dict (dict): Motion dictionary containing mask and motions tracking_method (str): "spatracker" or "moge" Returns: torch.Tensor: Modified pred_tracks with same shape as input """ pred_tracks = pred_tracks.to(self.device).float() if tracking_method == "moge": T, H, W, _ = pred_tracks.shape selected_mask = motion_dict['mask'] valid_selected = ~torch.any(torch.isnan(pred_tracks[0]), dim=2) & selected_mask valid_selected = valid_selected.reshape([-1]) modified_tracks = pred_tracks.clone().reshape(T, -1, 3) for frame_idx in range(self.num_frames): motion_mat = motion_dict['motions'][frame_idx] motion_mat[0, 3] /= W motion_mat[1, 3] /= H points = modified_tracks[frame_idx, valid_selected] points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1) transformed_points = torch.matmul(points_homo, motion_mat.T) modified_tracks[frame_idx, valid_selected] = transformed_points[:, :3] return modified_tracks else: points_in_mask = self._get_points_in_mask(pred_tracks, motion_dict['mask']) modified_tracks = pred_tracks.clone() for frame_idx in range(pred_tracks.shape[0]): motion_mat = motion_dict['motions'][frame_idx] points = modified_tracks[frame_idx, points_in_mask] points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1) transformed_points = torch.matmul(points_homo, motion_mat.T) modified_tracks[frame_idx, points_in_mask] = transformed_points[:, :3] return modified_tracks