File size: 23,339 Bytes
fb9c306
 
 
 
c4ad401
fb9c306
 
31086ae
4b2a9c2
4914695
31086ae
 
 
43d27f2
2c0627c
 
4914695
28d211c
fb9c306
c4ad401
fb9c306
 
4b2a9c2
 
fb9c306
 
 
 
 
 
 
 
 
31086ae
2a0edfe
 
31086ae
2a0edfe
 
31086ae
 
2a0edfe
 
31086ae
 
2a0edfe
 
 
 
31086ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0edfe
31086ae
 
f1eedd1
31086ae
 
 
 
f1eedd1
31086ae
283e483
 
 
31086ae
 
 
 
 
283e483
f1eedd1
 
 
 
 
31086ae
 
 
 
 
f1eedd1
 
 
31086ae
 
 
f1eedd1
31086ae
f1eedd1
31086ae
 
 
 
 
f1eedd1
31086ae
 
f1eedd1
 
 
31086ae
 
f1eedd1
31086ae
 
 
 
 
f1eedd1
 
31086ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1eedd1
31086ae
 
 
 
 
f1eedd1
 
 
 
 
 
 
31086ae
fb9c306
31086ae
 
 
 
 
fb9c306
31086ae
fb9c306
31086ae
 
fb9c306
31086ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9c306
 
 
 
 
 
31086ae
fb9c306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31086ae
fb9c306
 
 
2a0edfe
fb9c306
 
 
 
 
 
817f16e
 
 
fb9c306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0edfe
fb9c306
 
 
 
28d211c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0edfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2e668f
2a0edfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28d211c
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9c306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0edfe
fb9c306
 
 
 
 
 
28d211c
 
 
 
 
 
fb9c306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0edfe
fb9c306
 
 
 
 
2a0edfe
fb9c306
 
 
d2e668f
 
 
 
 
 
 
 
 
 
 
 
 
fb9c306
28d211c
 
 
fb9c306
 
 
28d211c
fb9c306
 
 
 
 
 
 
 
 
 
 
2a0edfe
fb9c306
 
 
 
 
 
2a0edfe
fb9c306
2a0edfe
fb9c306
2a0edfe
fb9c306
43d27f2
2a0edfe
 
 
 
 
 
 
 
 
 
 
 
 
fb9c306
 
 
 
 
 
 
 
 
2a0edfe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
import json
import os
import sys
import tempfile
from importlib.resources import files

import gradio as gr
import ray
from dotenv import load_dotenv

from graphgen.engine import Engine
from graphgen.operators import operators
from graphgen.utils import CURRENT_LOGGER_VAR, set_logger
from webui.base import WebuiParams
from webui.i18n import Translate
from webui.i18n import gettext as _
from webui.test_api import test_api_connection
from webui.utils import cleanup_workspace, count_tokens, preview_file, setup_workspace

root_dir = files("webui").parent
sys.path.append(root_dir)

load_dotenv()

css = """
.center-row {
    display: flex;
    justify-content: center;
    align-items: center;
}
"""


def _get_partition_params(params: WebuiParams):
    method = params.partition_method
    if method == "dfs":
        return {
            "max_units_per_community": params.dfs_max_units,
        }
    if method == "bfs":
        return {
            "max_units_per_community": params.bfs_max_units,
        }
    if method == "leiden":
        return {
            "max_size": params.leiden_max_size,
            "use_lcc": params.leiden_use_lcc,
            "random_seed": params.leiden_random_seed,
        }
    # ece
    return {
        "max_units_per_community": params.ece_max_units,
        "min_units_per_community": params.ece_min_units,
        "max_tokens_per_community": params.ece_max_tokens,
        "unit_sampling": params.ece_unit_sampling,
    }


# pylint: disable=too-many-statements
def run_graphgen(params: WebuiParams, progress=gr.Progress()):
    # 1. Setup Workspace
    log_file, working_dir = setup_workspace(os.path.join(root_dir, "cache"))
    driver_logger = set_logger(log_file, "GraphGeb", if_stream=True)
    CURRENT_LOGGER_VAR.set(driver_logger)

    # 2. Setup Environment Variables for Ray Actors/LLM Init
    # The refactored code relies on env vars in graphgen/common/init_llm.py
    os.environ["SYNTHESIZER_BACKEND"] = "openai_api"  # Assuming OpenAI compatible API
    os.environ["SYNTHESIZER_BASE_URL"] = params.synthesizer_url
    os.environ["SYNTHESIZER_API_KEY"] = params.api_key
    os.environ["SYNTHESIZER_MODEL"] = params.synthesizer_model
    os.environ["RPM"] = str(params.rpm)
    os.environ["TPM"] = str(params.tpm)
    os.environ["TOKENIZER_MODEL"] = params.tokenizer

    if params.if_trainee_model:
        os.environ["TRAINEE_BACKEND"] = "openai_api"
        os.environ["TRAINEE_BASE_URL"] = params.trainee_url
        os.environ["TRAINEE_API_KEY"] = params.trainee_api_key
        os.environ["TRAINEE_MODEL"] = params.trainee_model

    # 3. Construct Pipeline Configuration (DAG)
    nodes = [
        {
            "id": "read",
            "op_name": "read",
            "type": "source",
            "dependencies": [],
            "params": {
                "input_path": [params.upload_file],
            },
        },
        {
            "id": "chunk",
            "op_name": "chunk",
            "type": "map_batch",
            "dependencies": ["read"],
            "execution_params": {"replicas": 1},
            "params": {
                "chunk_size": params.chunk_size,
                "chunk_overlap": params.chunk_overlap,
            },
        },
        {
            "id": "build_kg",
            "op_name": "build_kg",
            "type": "map_batch",
            "dependencies": ["chunk"],
            "execution_params": {"replicas": 1, "batch_size": 128},
        },
    ]

    last_node_id = "build_kg"

    # Optional: Quiz and Judge
    if params.if_trainee_model:
        nodes.append(
            {
                "id": "quiz",
                "op_name": "quiz",
                "type": "aggregate",  # QuizService uses aggregate in config
                "dependencies": ["build_kg"],
                "execution_params": {"replicas": 1, "batch_size": 128},
                "params": {
                    "quiz_samples": params.quiz_samples,
                    "concurrency_limit": 200,
                },
            }
        )

        nodes.append(
            {
                "id": "judge",
                "op_name": "judge",
                "type": "map_batch",
                "dependencies": ["quiz"],
                "execution_params": {"replicas": 1, "batch_size": 128},
            }
        )
        last_node_id = "judge"

    # Node: Partition
    nodes.append(
        {
            "id": "partition",
            "op_name": "partition",
            "type": "aggregate",  # PartitionService uses aggregate
            "dependencies": [last_node_id],
            "params": {
                "method": params.partition_method,
                "method_params": _get_partition_params(params),
            },
        }
    )

    # Node: Generate
    nodes.append(
        {
            "id": "generate",
            "op_name": "generate",
            "type": "map_batch",
            "dependencies": ["partition"],
            "execution_params": {"replicas": 1, "batch_size": 128},
            "params": {
                "method": params.mode,
                "data_format": params.data_format,
            },
        }
    )

    config = {"global_params": {"working_dir": working_dir}, "nodes": nodes}

    try:
        # 4. Initialize and Run Engine
        # Initialize Ray if not already running (Engine handles this mostly, but good for safety)
        if not ray.is_initialized():
            ray.init(ignore_reinit_error=True, log_to_driver=True)

        engine = Engine(config, operators)

        # Start with an empty dataset to kick off the pipeline
        ds = ray.data.from_items([])

        # Execute pipeline
        results = engine.execute(ds)

        # 5. Process Output
        # Extract the result from the 'generate' node
        if "generate" in results:
            result_ds = results["generate"]

            # Create a temporary file to save the output
            with tempfile.NamedTemporaryFile(
                mode="w", suffix=".jsonl", delete=False, encoding="utf-8"
            ) as tmpfile:
                # Iterate over rows and write to file
                for row in result_ds.iter_rows():
                    json.dump(row, tmpfile, ensure_ascii=False)
                    tmpfile.write("\n")
                output_file = tmpfile.name
        else:
            raise gr.Error("Generation step failed to produce output.")

        # Note: Dynamic token counting from distributed actors is not directly available
        # via client properties in the new architecture. We return the estimated stats from input.

        return output_file, params.token_counter

    except Exception as e:  # pylint: disable=broad-except
        raise gr.Error(f"Error occurred: {str(e)}")

    finally:
        # Clean up workspace
        cleanup_workspace(working_dir)  # Optional: keep for debugging or enable


with gr.Blocks(title="GraphGen Demo", theme=gr.themes.Glass(), css=css) as demo:
    # Header
    gr.Image(
        value=os.path.join(root_dir, "resources", "images", "logo.png"),
        label="GraphGen Banner",
        elem_id="banner",
        interactive=False,
        container=False,
        show_download_button=False,
        show_fullscreen_button=False,
    )
    lang_btn = gr.Radio(
        choices=[
            ("English", "en"),
            ("简体中文", "zh"),
        ],
        value="en",
        render=False,
        container=False,
        elem_classes=["center-row"],
    )

    gr.HTML(
        """
    <div style="display: flex; gap: 8px; margin-left: auto; align-items: center; justify-content: center;">
        <a href="https://github.com/open-sciencelab/GraphGen/releases">
            <img src="https://img.shields.io/badge/Version-v0.1.0-blue" alt="Version">
        </a>
        <a href="https://graphgen-docs.example.com">
            <img src="https://img.shields.io/badge/Docs-Latest-brightgreen" alt="Documentation">
        </a>
        <a href="https://github.com/open-sciencelab/GraphGen/issues/10">
            <img src="https://img.shields.io/github/stars/open-sciencelab/GraphGen?style=social" alt="GitHub Stars">
        </a>
        <a href="https://arxiv.org/abs/2505.20416">
            <img src="https://img.shields.io/badge/arXiv-pdf-yellow" alt="arXiv">
        </a>
    </div>
    """
    )
    with Translate(
        os.path.join(root_dir, "webui", "translation.json"),
        lang_btn,
        placeholder_langs=["en", "zh"],
        persistant=False,
    ):
        lang_btn.render()

        gr.Markdown(value=_("Title") + _("Intro"))

        if_trainee_model = gr.Checkbox(
            label=_("Use Trainee Model"), value=False, interactive=True
        )

        with gr.Accordion(label=_("Model Config"), open=False):
            tokenizer = gr.Textbox(
                label="Tokenizer", value="cl100k_base", interactive=True
            )
            synthesizer_url = gr.Textbox(
                label="Synthesizer URL",
                value="https://api.siliconflow.cn/v1",
                info=_("Synthesizer URL Info"),
                interactive=True,
            )
            synthesizer_model = gr.Textbox(
                label="Synthesizer Model",
                value="Qwen/Qwen2.5-7B-Instruct",
                info=_("Synthesizer Model Info"),
                interactive=True,
            )
            trainee_url = gr.Textbox(
                label="Trainee URL",
                value="https://api.siliconflow.cn/v1",
                info=_("Trainee URL Info"),
                interactive=True,
                visible=if_trainee_model.value is True,
            )
            trainee_model = gr.Textbox(
                label="Trainee Model",
                value="Qwen/Qwen2.5-7B-Instruct",
                info=_("Trainee Model Info"),
                interactive=True,
                visible=if_trainee_model.value is True,
            )
            trainee_api_key = gr.Textbox(
                label=_("SiliconFlow Token for Trainee Model"),
                type="password",
                value="",
                info="https://cloud.siliconflow.cn/account/ak",
                visible=if_trainee_model.value is True,
            )

        with gr.Row(equal_height=True):
            with gr.Column(scale=3):
                api_key = gr.Textbox(
                    label=_("SiliconFlow Token"),
                    type="password",
                    value="",
                    info=_("SiliconFlow Token Info"),
                )
            with gr.Column(scale=1):
                test_connection_btn = gr.Button(_("Test Connection"))

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                with gr.Blocks():
                    with gr.Row(equal_height=True):
                        with gr.Column(scale=1):
                            upload_file = gr.File(
                                label=_("Upload File"),
                                file_count="single",
                                file_types=[".txt", ".json", ".jsonl", ".csv"],
                                interactive=True,
                            )
                            examples_dir = os.path.join(root_dir, "webui", "examples")
                            gr.Examples(
                                examples=[
                                    [os.path.join(examples_dir, "txt_demo.txt")],
                                    [os.path.join(examples_dir, "jsonl_demo.jsonl")],
                                    [os.path.join(examples_dir, "json_demo.json")],
                                    [os.path.join(examples_dir, "csv_demo.csv")],
                                ],
                                inputs=upload_file,
                                label=_("Example Files"),
                                examples_per_page=4,
                            )
            with gr.Column(scale=1):
                with gr.Blocks():
                    preview_code = gr.Code(
                        label=_("File Preview"),
                        interactive=False,
                        visible=True,
                        elem_id="preview_code",
                    )
                    preview_df = gr.DataFrame(
                        label=_("File Preview"),
                        interactive=False,
                        visible=False,
                        elem_id="preview_df",
                    )

        with gr.Accordion(label=_("Split Config"), open=False):
            gr.Markdown(value=_("Split Config Info"))
            with gr.Row(equal_height=True):
                with gr.Column(scale=1):
                    chunk_size = gr.Slider(
                        label=_("Chunk Size"),
                        minimum=256,
                        maximum=4096,
                        value=1024,
                        step=256,
                        interactive=True,
                        info=_("Chunk Size Info"),
                    )
                with gr.Column(scale=1):
                    chunk_overlap = gr.Slider(
                        label=_("Chunk Overlap"),
                        minimum=0,
                        maximum=500,
                        value=100,
                        step=100,
                        interactive=True,
                        info=_("Chunk Overlap Info"),
                    )

        with gr.Accordion(
            label=_("Quiz & Judge Config"), open=False, visible=False
        ) as quiz_accordion:
            gr.Markdown(value=_("Quiz & Judge Config Info"))
            quiz_samples = gr.Number(
                label=_("Quiz Samples"),
                value=2,
                minimum=1,
                interactive=True,
                info=_("Quiz Samples Info"),
            )

        with gr.Accordion(label=_("Partition Config"), open=False):
            gr.Markdown(value=_("Partition Config Info"))

            partition_method = gr.Dropdown(
                label=_("Partition Method"),
                choices=["dfs", "bfs", "ece", "leiden"],
                value="ece",
                interactive=True,
                info=_("Which algorithm to use for graph partitioning."),
            )

            # DFS method parameters
            with gr.Group(visible=False) as dfs_group:
                gr.Markdown(_("DFS intro"))
                dfs_max_units = gr.Slider(
                    label=_("Max Units Per Community"),
                    minimum=1,
                    maximum=100,
                    value=5,
                    step=1,
                    interactive=True,
                    info=_("Max Units Per Community Info"),
                )
            # BFS method parameters
            with gr.Group(visible=False) as bfs_group:
                gr.Markdown(_("BFS intro"))
                bfs_max_units = gr.Slider(
                    label=_("Max Units Per Community"),
                    minimum=1,
                    maximum=100,
                    value=5,
                    step=1,
                    interactive=True,
                    info=_("Max Units Per Community Info"),
                )

            # Leiden method parameters
            with gr.Group(visible=False) as leiden_group:
                gr.Markdown(_("Leiden intro"))
                leiden_max_size = gr.Slider(
                    label=_("Maximum Size of Communities"),
                    minimum=1,
                    maximum=100,
                    value=20,
                    step=1,
                    interactive=True,
                    info=_("Maximum Size of Communities Info"),
                )
                leiden_use_lcc = gr.Checkbox(
                    label=_("Use Largest Connected Component"),
                    value=False,
                    interactive=True,
                    info=_("Use Largest Connected Component Info"),
                )
                leiden_random_seed = gr.Number(
                    label=_("Random Seed"),
                    value=42,
                    precision=0,
                    interactive=True,
                    info=_("Random Seed Info"),
                )

            # ECE method parameters
            with gr.Group(visible=True) as ece_group:
                gr.Markdown(_("ECE intro"))
                ece_max_units = gr.Slider(
                    label=_("Max Units Per Community"),
                    minimum=1,
                    maximum=100,
                    value=20,
                    step=1,
                    interactive=True,
                    info=_("Max Units Per Community Info"),
                )
                ece_min_units = gr.Slider(
                    label=_("Min Units Per Community"),
                    minimum=1,
                    maximum=100,
                    value=3,
                    step=1,
                    interactive=True,
                    info=_("Min Units Per Community Info"),
                )
                ece_max_tokens = gr.Slider(
                    label=_("Max Tokens Per Community"),
                    minimum=512,
                    maximum=20_480,
                    value=10_240,
                    step=512,
                    interactive=True,
                    info=_("Max Tokens Per Community Info"),
                )
                ece_unit_sampling = gr.Radio(
                    label=_("Unit Sampling Strategy"),
                    choices=["random"],
                    value="random",
                    interactive=True,
                    info=_("Unit Sampling Strategy Info"),
                )

            def toggle_partition_params(method):
                dfs = method == "dfs"
                bfs = method == "bfs"
                leiden = method == "leiden"
                ece = method == "ece"
                return (
                    gr.update(visible=dfs),  # dfs_group
                    gr.update(visible=bfs),  # bfs_group
                    gr.update(visible=leiden),  # leiden_group
                    gr.update(visible=ece),  # ece_group
                )

            partition_method.change(
                fn=toggle_partition_params,
                inputs=partition_method,
                outputs=[dfs_group, bfs_group, leiden_group, ece_group],
            )

        with gr.Accordion(label=_("Generation Config"), open=False):
            gr.Markdown(value=_("Generation Config Info"))
            mode = gr.Radio(
                choices=["atomic", "multi_hop", "aggregated", "CoT"],
                label=_("Mode"),
                value="aggregated",
                interactive=True,
                info=_("Mode Info"),
            )
            data_format = gr.Radio(
                choices=["Alpaca", "Sharegpt", "ChatML"],
                label=_("Output Data Format"),
                value="Alpaca",
                interactive=True,
                info=_("Output Data Format Info"),
            )

        with gr.Blocks():
            token_counter = gr.DataFrame(
                label="Token Stats",
                headers=[
                    "Source Text Token Count",
                    "Estimated Token Usage",
                    "Token Used",
                ],
                datatype="str",
                interactive=False,
                visible=False,
                wrap=True,
            )

        with gr.Blocks():
            with gr.Row(equal_height=True):
                with gr.Column():
                    rpm = gr.Slider(
                        label="RPM",
                        minimum=10,
                        maximum=10000,
                        value=1000,
                        step=100,
                        interactive=True,
                        visible=True,
                    )
                with gr.Column():
                    tpm = gr.Slider(
                        label="TPM",
                        minimum=5000,
                        maximum=5000000,
                        value=50000,
                        step=1000,
                        interactive=True,
                        visible=True,
                    )

        with gr.Blocks():
            with gr.Column(scale=1):
                output = gr.File(
                    label=_("Output File"),
                    file_count="single",
                    interactive=False,
                )

        submit_btn = gr.Button(_("Run GraphGen"))

        # Test Connection
        test_connection_btn.click(
            test_api_connection,
            inputs=[synthesizer_url, api_key, synthesizer_model],
            outputs=[],
        )

        if if_trainee_model.value:
            test_connection_btn.click(
                test_api_connection,
                inputs=[trainee_url, api_key, trainee_model],
                outputs=[],
            )

        if_trainee_model.change(
            lambda use_trainee: [gr.update(visible=use_trainee)] * 4,
            inputs=if_trainee_model,
            outputs=[
                trainee_url,
                trainee_model,
                trainee_api_key,
                quiz_accordion,
            ],
        )

        if_trainee_model.change(
            lambda on: (
                gr.update(
                    choices=["random"]
                    if not on
                    else ["random", "max_loss", "min_loss"],
                    value="random",
                )
            ),
            inputs=if_trainee_model,
            outputs=ece_unit_sampling,
        )

        upload_file.change(
            preview_file, inputs=upload_file, outputs=[preview_code, preview_df]
        ).then(
            lambda x: gr.update(visible=True), inputs=upload_file, outputs=token_counter
        ).then(
            count_tokens,
            inputs=[upload_file, tokenizer, token_counter],
            outputs=token_counter,
        )

        # run GraphGen
        submit_btn.click(
            lambda x: (gr.update(visible=False)),
            inputs=[token_counter],
            outputs=[token_counter],
        )

        submit_btn.click(
            lambda *args: run_graphgen(
                WebuiParams(**dict(zip(WebuiParams.__annotations__, args)))
            ),
            inputs=[
                if_trainee_model,
                upload_file,
                tokenizer,
                synthesizer_model,
                synthesizer_url,
                trainee_model,
                trainee_url,
                api_key,
                trainee_api_key,
                chunk_size,
                chunk_overlap,
                quiz_samples,
                partition_method,
                dfs_max_units,
                bfs_max_units,
                leiden_max_size,
                leiden_use_lcc,
                leiden_random_seed,
                ece_max_units,
                ece_min_units,
                ece_max_tokens,
                ece_unit_sampling,
                mode,
                data_format,
                rpm,
                tpm,
                token_counter,
            ],
            outputs=[output, token_counter],
        )

if __name__ == "__main__":
    demo.queue(api_open=False, default_concurrency_limit=2)
    demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)