Spaces:
Running
Running
File size: 23,339 Bytes
fb9c306 c4ad401 fb9c306 31086ae 4b2a9c2 4914695 31086ae 43d27f2 2c0627c 4914695 28d211c fb9c306 c4ad401 fb9c306 4b2a9c2 fb9c306 31086ae 2a0edfe 31086ae 2a0edfe 31086ae 2a0edfe 31086ae 2a0edfe 31086ae 2a0edfe 31086ae f1eedd1 31086ae f1eedd1 31086ae 283e483 31086ae 283e483 f1eedd1 31086ae f1eedd1 31086ae f1eedd1 31086ae f1eedd1 31086ae f1eedd1 31086ae f1eedd1 31086ae f1eedd1 31086ae f1eedd1 31086ae f1eedd1 31086ae f1eedd1 31086ae fb9c306 31086ae fb9c306 31086ae fb9c306 31086ae fb9c306 31086ae fb9c306 31086ae fb9c306 31086ae fb9c306 2a0edfe fb9c306 817f16e fb9c306 2a0edfe fb9c306 28d211c 2a0edfe d2e668f 2a0edfe 28d211c fb9c306 2a0edfe fb9c306 28d211c fb9c306 2a0edfe fb9c306 2a0edfe fb9c306 d2e668f fb9c306 28d211c fb9c306 28d211c fb9c306 2a0edfe fb9c306 2a0edfe fb9c306 2a0edfe fb9c306 2a0edfe fb9c306 43d27f2 2a0edfe fb9c306 2a0edfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
import json
import os
import sys
import tempfile
from importlib.resources import files
import gradio as gr
import ray
from dotenv import load_dotenv
from graphgen.engine import Engine
from graphgen.operators import operators
from graphgen.utils import CURRENT_LOGGER_VAR, set_logger
from webui.base import WebuiParams
from webui.i18n import Translate
from webui.i18n import gettext as _
from webui.test_api import test_api_connection
from webui.utils import cleanup_workspace, count_tokens, preview_file, setup_workspace
root_dir = files("webui").parent
sys.path.append(root_dir)
load_dotenv()
css = """
.center-row {
display: flex;
justify-content: center;
align-items: center;
}
"""
def _get_partition_params(params: WebuiParams):
method = params.partition_method
if method == "dfs":
return {
"max_units_per_community": params.dfs_max_units,
}
if method == "bfs":
return {
"max_units_per_community": params.bfs_max_units,
}
if method == "leiden":
return {
"max_size": params.leiden_max_size,
"use_lcc": params.leiden_use_lcc,
"random_seed": params.leiden_random_seed,
}
# ece
return {
"max_units_per_community": params.ece_max_units,
"min_units_per_community": params.ece_min_units,
"max_tokens_per_community": params.ece_max_tokens,
"unit_sampling": params.ece_unit_sampling,
}
# pylint: disable=too-many-statements
def run_graphgen(params: WebuiParams, progress=gr.Progress()):
# 1. Setup Workspace
log_file, working_dir = setup_workspace(os.path.join(root_dir, "cache"))
driver_logger = set_logger(log_file, "GraphGeb", if_stream=True)
CURRENT_LOGGER_VAR.set(driver_logger)
# 2. Setup Environment Variables for Ray Actors/LLM Init
# The refactored code relies on env vars in graphgen/common/init_llm.py
os.environ["SYNTHESIZER_BACKEND"] = "openai_api" # Assuming OpenAI compatible API
os.environ["SYNTHESIZER_BASE_URL"] = params.synthesizer_url
os.environ["SYNTHESIZER_API_KEY"] = params.api_key
os.environ["SYNTHESIZER_MODEL"] = params.synthesizer_model
os.environ["RPM"] = str(params.rpm)
os.environ["TPM"] = str(params.tpm)
os.environ["TOKENIZER_MODEL"] = params.tokenizer
if params.if_trainee_model:
os.environ["TRAINEE_BACKEND"] = "openai_api"
os.environ["TRAINEE_BASE_URL"] = params.trainee_url
os.environ["TRAINEE_API_KEY"] = params.trainee_api_key
os.environ["TRAINEE_MODEL"] = params.trainee_model
# 3. Construct Pipeline Configuration (DAG)
nodes = [
{
"id": "read",
"op_name": "read",
"type": "source",
"dependencies": [],
"params": {
"input_path": [params.upload_file],
},
},
{
"id": "chunk",
"op_name": "chunk",
"type": "map_batch",
"dependencies": ["read"],
"execution_params": {"replicas": 1},
"params": {
"chunk_size": params.chunk_size,
"chunk_overlap": params.chunk_overlap,
},
},
{
"id": "build_kg",
"op_name": "build_kg",
"type": "map_batch",
"dependencies": ["chunk"],
"execution_params": {"replicas": 1, "batch_size": 128},
},
]
last_node_id = "build_kg"
# Optional: Quiz and Judge
if params.if_trainee_model:
nodes.append(
{
"id": "quiz",
"op_name": "quiz",
"type": "aggregate", # QuizService uses aggregate in config
"dependencies": ["build_kg"],
"execution_params": {"replicas": 1, "batch_size": 128},
"params": {
"quiz_samples": params.quiz_samples,
"concurrency_limit": 200,
},
}
)
nodes.append(
{
"id": "judge",
"op_name": "judge",
"type": "map_batch",
"dependencies": ["quiz"],
"execution_params": {"replicas": 1, "batch_size": 128},
}
)
last_node_id = "judge"
# Node: Partition
nodes.append(
{
"id": "partition",
"op_name": "partition",
"type": "aggregate", # PartitionService uses aggregate
"dependencies": [last_node_id],
"params": {
"method": params.partition_method,
"method_params": _get_partition_params(params),
},
}
)
# Node: Generate
nodes.append(
{
"id": "generate",
"op_name": "generate",
"type": "map_batch",
"dependencies": ["partition"],
"execution_params": {"replicas": 1, "batch_size": 128},
"params": {
"method": params.mode,
"data_format": params.data_format,
},
}
)
config = {"global_params": {"working_dir": working_dir}, "nodes": nodes}
try:
# 4. Initialize and Run Engine
# Initialize Ray if not already running (Engine handles this mostly, but good for safety)
if not ray.is_initialized():
ray.init(ignore_reinit_error=True, log_to_driver=True)
engine = Engine(config, operators)
# Start with an empty dataset to kick off the pipeline
ds = ray.data.from_items([])
# Execute pipeline
results = engine.execute(ds)
# 5. Process Output
# Extract the result from the 'generate' node
if "generate" in results:
result_ds = results["generate"]
# Create a temporary file to save the output
with tempfile.NamedTemporaryFile(
mode="w", suffix=".jsonl", delete=False, encoding="utf-8"
) as tmpfile:
# Iterate over rows and write to file
for row in result_ds.iter_rows():
json.dump(row, tmpfile, ensure_ascii=False)
tmpfile.write("\n")
output_file = tmpfile.name
else:
raise gr.Error("Generation step failed to produce output.")
# Note: Dynamic token counting from distributed actors is not directly available
# via client properties in the new architecture. We return the estimated stats from input.
return output_file, params.token_counter
except Exception as e: # pylint: disable=broad-except
raise gr.Error(f"Error occurred: {str(e)}")
finally:
# Clean up workspace
cleanup_workspace(working_dir) # Optional: keep for debugging or enable
with gr.Blocks(title="GraphGen Demo", theme=gr.themes.Glass(), css=css) as demo:
# Header
gr.Image(
value=os.path.join(root_dir, "resources", "images", "logo.png"),
label="GraphGen Banner",
elem_id="banner",
interactive=False,
container=False,
show_download_button=False,
show_fullscreen_button=False,
)
lang_btn = gr.Radio(
choices=[
("English", "en"),
("简体中文", "zh"),
],
value="en",
render=False,
container=False,
elem_classes=["center-row"],
)
gr.HTML(
"""
<div style="display: flex; gap: 8px; margin-left: auto; align-items: center; justify-content: center;">
<a href="https://github.com/open-sciencelab/GraphGen/releases">
<img src="https://img.shields.io/badge/Version-v0.1.0-blue" alt="Version">
</a>
<a href="https://graphgen-docs.example.com">
<img src="https://img.shields.io/badge/Docs-Latest-brightgreen" alt="Documentation">
</a>
<a href="https://github.com/open-sciencelab/GraphGen/issues/10">
<img src="https://img.shields.io/github/stars/open-sciencelab/GraphGen?style=social" alt="GitHub Stars">
</a>
<a href="https://arxiv.org/abs/2505.20416">
<img src="https://img.shields.io/badge/arXiv-pdf-yellow" alt="arXiv">
</a>
</div>
"""
)
with Translate(
os.path.join(root_dir, "webui", "translation.json"),
lang_btn,
placeholder_langs=["en", "zh"],
persistant=False,
):
lang_btn.render()
gr.Markdown(value=_("Title") + _("Intro"))
if_trainee_model = gr.Checkbox(
label=_("Use Trainee Model"), value=False, interactive=True
)
with gr.Accordion(label=_("Model Config"), open=False):
tokenizer = gr.Textbox(
label="Tokenizer", value="cl100k_base", interactive=True
)
synthesizer_url = gr.Textbox(
label="Synthesizer URL",
value="https://api.siliconflow.cn/v1",
info=_("Synthesizer URL Info"),
interactive=True,
)
synthesizer_model = gr.Textbox(
label="Synthesizer Model",
value="Qwen/Qwen2.5-7B-Instruct",
info=_("Synthesizer Model Info"),
interactive=True,
)
trainee_url = gr.Textbox(
label="Trainee URL",
value="https://api.siliconflow.cn/v1",
info=_("Trainee URL Info"),
interactive=True,
visible=if_trainee_model.value is True,
)
trainee_model = gr.Textbox(
label="Trainee Model",
value="Qwen/Qwen2.5-7B-Instruct",
info=_("Trainee Model Info"),
interactive=True,
visible=if_trainee_model.value is True,
)
trainee_api_key = gr.Textbox(
label=_("SiliconFlow Token for Trainee Model"),
type="password",
value="",
info="https://cloud.siliconflow.cn/account/ak",
visible=if_trainee_model.value is True,
)
with gr.Row(equal_height=True):
with gr.Column(scale=3):
api_key = gr.Textbox(
label=_("SiliconFlow Token"),
type="password",
value="",
info=_("SiliconFlow Token Info"),
)
with gr.Column(scale=1):
test_connection_btn = gr.Button(_("Test Connection"))
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Blocks():
with gr.Row(equal_height=True):
with gr.Column(scale=1):
upload_file = gr.File(
label=_("Upload File"),
file_count="single",
file_types=[".txt", ".json", ".jsonl", ".csv"],
interactive=True,
)
examples_dir = os.path.join(root_dir, "webui", "examples")
gr.Examples(
examples=[
[os.path.join(examples_dir, "txt_demo.txt")],
[os.path.join(examples_dir, "jsonl_demo.jsonl")],
[os.path.join(examples_dir, "json_demo.json")],
[os.path.join(examples_dir, "csv_demo.csv")],
],
inputs=upload_file,
label=_("Example Files"),
examples_per_page=4,
)
with gr.Column(scale=1):
with gr.Blocks():
preview_code = gr.Code(
label=_("File Preview"),
interactive=False,
visible=True,
elem_id="preview_code",
)
preview_df = gr.DataFrame(
label=_("File Preview"),
interactive=False,
visible=False,
elem_id="preview_df",
)
with gr.Accordion(label=_("Split Config"), open=False):
gr.Markdown(value=_("Split Config Info"))
with gr.Row(equal_height=True):
with gr.Column(scale=1):
chunk_size = gr.Slider(
label=_("Chunk Size"),
minimum=256,
maximum=4096,
value=1024,
step=256,
interactive=True,
info=_("Chunk Size Info"),
)
with gr.Column(scale=1):
chunk_overlap = gr.Slider(
label=_("Chunk Overlap"),
minimum=0,
maximum=500,
value=100,
step=100,
interactive=True,
info=_("Chunk Overlap Info"),
)
with gr.Accordion(
label=_("Quiz & Judge Config"), open=False, visible=False
) as quiz_accordion:
gr.Markdown(value=_("Quiz & Judge Config Info"))
quiz_samples = gr.Number(
label=_("Quiz Samples"),
value=2,
minimum=1,
interactive=True,
info=_("Quiz Samples Info"),
)
with gr.Accordion(label=_("Partition Config"), open=False):
gr.Markdown(value=_("Partition Config Info"))
partition_method = gr.Dropdown(
label=_("Partition Method"),
choices=["dfs", "bfs", "ece", "leiden"],
value="ece",
interactive=True,
info=_("Which algorithm to use for graph partitioning."),
)
# DFS method parameters
with gr.Group(visible=False) as dfs_group:
gr.Markdown(_("DFS intro"))
dfs_max_units = gr.Slider(
label=_("Max Units Per Community"),
minimum=1,
maximum=100,
value=5,
step=1,
interactive=True,
info=_("Max Units Per Community Info"),
)
# BFS method parameters
with gr.Group(visible=False) as bfs_group:
gr.Markdown(_("BFS intro"))
bfs_max_units = gr.Slider(
label=_("Max Units Per Community"),
minimum=1,
maximum=100,
value=5,
step=1,
interactive=True,
info=_("Max Units Per Community Info"),
)
# Leiden method parameters
with gr.Group(visible=False) as leiden_group:
gr.Markdown(_("Leiden intro"))
leiden_max_size = gr.Slider(
label=_("Maximum Size of Communities"),
minimum=1,
maximum=100,
value=20,
step=1,
interactive=True,
info=_("Maximum Size of Communities Info"),
)
leiden_use_lcc = gr.Checkbox(
label=_("Use Largest Connected Component"),
value=False,
interactive=True,
info=_("Use Largest Connected Component Info"),
)
leiden_random_seed = gr.Number(
label=_("Random Seed"),
value=42,
precision=0,
interactive=True,
info=_("Random Seed Info"),
)
# ECE method parameters
with gr.Group(visible=True) as ece_group:
gr.Markdown(_("ECE intro"))
ece_max_units = gr.Slider(
label=_("Max Units Per Community"),
minimum=1,
maximum=100,
value=20,
step=1,
interactive=True,
info=_("Max Units Per Community Info"),
)
ece_min_units = gr.Slider(
label=_("Min Units Per Community"),
minimum=1,
maximum=100,
value=3,
step=1,
interactive=True,
info=_("Min Units Per Community Info"),
)
ece_max_tokens = gr.Slider(
label=_("Max Tokens Per Community"),
minimum=512,
maximum=20_480,
value=10_240,
step=512,
interactive=True,
info=_("Max Tokens Per Community Info"),
)
ece_unit_sampling = gr.Radio(
label=_("Unit Sampling Strategy"),
choices=["random"],
value="random",
interactive=True,
info=_("Unit Sampling Strategy Info"),
)
def toggle_partition_params(method):
dfs = method == "dfs"
bfs = method == "bfs"
leiden = method == "leiden"
ece = method == "ece"
return (
gr.update(visible=dfs), # dfs_group
gr.update(visible=bfs), # bfs_group
gr.update(visible=leiden), # leiden_group
gr.update(visible=ece), # ece_group
)
partition_method.change(
fn=toggle_partition_params,
inputs=partition_method,
outputs=[dfs_group, bfs_group, leiden_group, ece_group],
)
with gr.Accordion(label=_("Generation Config"), open=False):
gr.Markdown(value=_("Generation Config Info"))
mode = gr.Radio(
choices=["atomic", "multi_hop", "aggregated", "CoT"],
label=_("Mode"),
value="aggregated",
interactive=True,
info=_("Mode Info"),
)
data_format = gr.Radio(
choices=["Alpaca", "Sharegpt", "ChatML"],
label=_("Output Data Format"),
value="Alpaca",
interactive=True,
info=_("Output Data Format Info"),
)
with gr.Blocks():
token_counter = gr.DataFrame(
label="Token Stats",
headers=[
"Source Text Token Count",
"Estimated Token Usage",
"Token Used",
],
datatype="str",
interactive=False,
visible=False,
wrap=True,
)
with gr.Blocks():
with gr.Row(equal_height=True):
with gr.Column():
rpm = gr.Slider(
label="RPM",
minimum=10,
maximum=10000,
value=1000,
step=100,
interactive=True,
visible=True,
)
with gr.Column():
tpm = gr.Slider(
label="TPM",
minimum=5000,
maximum=5000000,
value=50000,
step=1000,
interactive=True,
visible=True,
)
with gr.Blocks():
with gr.Column(scale=1):
output = gr.File(
label=_("Output File"),
file_count="single",
interactive=False,
)
submit_btn = gr.Button(_("Run GraphGen"))
# Test Connection
test_connection_btn.click(
test_api_connection,
inputs=[synthesizer_url, api_key, synthesizer_model],
outputs=[],
)
if if_trainee_model.value:
test_connection_btn.click(
test_api_connection,
inputs=[trainee_url, api_key, trainee_model],
outputs=[],
)
if_trainee_model.change(
lambda use_trainee: [gr.update(visible=use_trainee)] * 4,
inputs=if_trainee_model,
outputs=[
trainee_url,
trainee_model,
trainee_api_key,
quiz_accordion,
],
)
if_trainee_model.change(
lambda on: (
gr.update(
choices=["random"]
if not on
else ["random", "max_loss", "min_loss"],
value="random",
)
),
inputs=if_trainee_model,
outputs=ece_unit_sampling,
)
upload_file.change(
preview_file, inputs=upload_file, outputs=[preview_code, preview_df]
).then(
lambda x: gr.update(visible=True), inputs=upload_file, outputs=token_counter
).then(
count_tokens,
inputs=[upload_file, tokenizer, token_counter],
outputs=token_counter,
)
# run GraphGen
submit_btn.click(
lambda x: (gr.update(visible=False)),
inputs=[token_counter],
outputs=[token_counter],
)
submit_btn.click(
lambda *args: run_graphgen(
WebuiParams(**dict(zip(WebuiParams.__annotations__, args)))
),
inputs=[
if_trainee_model,
upload_file,
tokenizer,
synthesizer_model,
synthesizer_url,
trainee_model,
trainee_url,
api_key,
trainee_api_key,
chunk_size,
chunk_overlap,
quiz_samples,
partition_method,
dfs_max_units,
bfs_max_units,
leiden_max_size,
leiden_use_lcc,
leiden_random_seed,
ece_max_units,
ece_min_units,
ece_max_tokens,
ece_unit_sampling,
mode,
data_format,
rpm,
tpm,
token_counter,
],
outputs=[output, token_counter],
)
if __name__ == "__main__":
demo.queue(api_open=False, default_concurrency_limit=2)
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)
|