Your Name commited on
Commit
3932389
·
1 Parent(s): abba072

Fix: Use Instruction type for Pi-3.1 API, add nltk type stubs, improve error logging

Browse files

- Changed system message type from 'System' to 'Instruction' (System requires event_type)
- Added nltk type stubs to resolve type checking warnings
- Enhanced logging in LLM wrapper for better debugging
- Fixed initialize_gemini method reference in app.py
- Updated .gitignore to exclude .venv and generated files

Files changed (5) hide show
  1. .gitignore +7 -0
  2. agents/pi_agent.py +26 -16
  3. app.py +2 -3
  4. galatea_ai.py +0 -154
  5. llm_wrapper.py +4 -2
.gitignore CHANGED
@@ -10,3 +10,10 @@ __pycache__/
10
  venv/
11
  env/
12
  ENV/
 
 
 
 
 
 
 
 
10
  venv/
11
  env/
12
  ENV/
13
+ .venv/
14
+
15
+ # Generated files
16
+ *.log
17
+ chroma_db/
18
+ memory.json
19
+ "import random.md"
agents/pi_agent.py CHANGED
@@ -42,39 +42,49 @@ class PiResponseAgent:
42
  # Create context with emotional state
43
  emotions_text = ", ".join([f"{emotion}: {value:.2f}" for emotion, value in emotional_state.items()])
44
 
45
- # Build comprehensive context - Inflection AI API only accepts "Human" and "Assistant" types
46
- # We'll incorporate system instructions into the first Human message
47
  context_parts = []
48
 
49
- # Build system instructions as part of the user input context
50
- system_instructions = f"[Context: You are Galatea, an AI assistant. Emotional state: {emotions_text}. "
51
 
52
  # Add thinking context from Gemini if available
53
  if thinking_context:
54
- system_instructions += f"Internal analysis: {thinking_context}. "
55
 
56
  # Add retrieved memories if available
57
  if retrieved_memories and len(retrieved_memories) > 0:
58
- memory_text = "Relevant memories: "
59
  for i, memory in enumerate(retrieved_memories[:3], 1): # Top 3 most relevant
60
- memory_text += f"{i}. {memory['text'][:100]}; "
61
- system_instructions += memory_text
62
 
63
- system_instructions += "Keep response concise (under 50 words) and reflect emotional state.]"
64
-
65
- # Add conversation history as context messages (Human/Assistant only)
66
  if conversation_history and len(conversation_history) > 0:
67
- # Include recent conversation history
68
- for msg in conversation_history[-6:]: # Last 3 exchanges (6 messages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  context_parts.append({
70
  "text": msg["content"],
71
  "type": "Human" if msg["role"] == "user" else "Assistant"
72
  })
73
 
74
- # Add current user input with system context prepended
75
- enhanced_user_input = f"{system_instructions}\n\n{user_input}"
76
  context_parts.append({
77
- "text": enhanced_user_input,
78
  "type": "Human"
79
  })
80
 
 
42
  # Create context with emotional state
43
  emotions_text = ", ".join([f"{emotion}: {value:.2f}" for emotion, value in emotional_state.items()])
44
 
45
+ # Build comprehensive context with thinking insights, conversation history, and retrieved memories
 
46
  context_parts = []
47
 
48
+ # Base system context - Inflection AI uses lowercase "system" type
49
+ base_context = f"You are Galatea, an AI assistant with the following emotional state: {emotions_text}. Respond in character as Galatea. Keep your response concise (under 50 words) and reflect your emotional state in your tone."
50
 
51
  # Add thinking context from Gemini if available
52
  if thinking_context:
53
+ base_context += f"\n\nInternal analysis: {thinking_context}"
54
 
55
  # Add retrieved memories if available
56
  if retrieved_memories and len(retrieved_memories) > 0:
57
+ memory_text = "\n\nRelevant context from past conversations:\n"
58
  for i, memory in enumerate(retrieved_memories[:3], 1): # Top 3 most relevant
59
+ memory_text += f"{i}. {memory['text'][:150]}...\n"
60
+ base_context += memory_text
61
 
62
+ # Add conversation history context
 
 
63
  if conversation_history and len(conversation_history) > 0:
64
+ recent_history = conversation_history[-4:] # Last 2 exchanges
65
+ history_text = "\n\nRecent conversation context:\n"
66
+ for msg in recent_history:
67
+ role = "User" if msg["role"] == "user" else "You (Galatea)"
68
+ history_text += f"{role}: {msg['content']}\n"
69
+ base_context += history_text
70
+
71
+ context_parts.append({
72
+ "text": base_context,
73
+ "type": "Instruction" # Use "Instruction" type for system instructions (System requires event_type)
74
+ })
75
+
76
+ # Add conversation history as context messages
77
+ if conversation_history and len(conversation_history) > 4:
78
+ # Add older messages as context (but not the most recent ones we already included)
79
+ for msg in conversation_history[-8:-4]:
80
  context_parts.append({
81
  "text": msg["content"],
82
  "type": "Human" if msg["role"] == "user" else "Assistant"
83
  })
84
 
85
+ # Add current user input
 
86
  context_parts.append({
87
+ "text": user_input,
88
  "type": "Human"
89
  })
90
 
app.py CHANGED
@@ -106,9 +106,8 @@ def initialize_gemini():
106
  logging.error("GEMINI_API_KEY not found in environment variables")
107
  return False
108
 
109
- # Try to initialize Gemini specifically
110
- galatea_ai.initialize_gemini()
111
- gemini_success = hasattr(galatea_ai, 'gemini_available') and galatea_ai.gemini_available
112
 
113
  if gemini_success:
114
  gemini_initialized = True
 
106
  logging.error("GEMINI_API_KEY not found in environment variables")
107
  return False
108
 
109
+ # Check if Gemini agent is ready (initialization happens automatically in GalateaAI.__init__)
110
+ gemini_success = hasattr(galatea_ai, 'gemini_agent') and galatea_ai.gemini_agent.is_ready()
 
111
 
112
  if gemini_success:
113
  gemini_initialized = True
galatea_ai.py CHANGED
@@ -56,10 +56,6 @@ class GalateaAI:
56
  self.emotional_agent = EmotionalStateAgent(config=self.config)
57
  self.sentiment_agent = SentimentAgent(config=self.config)
58
 
59
- # Run end-to-end chat simulation test - CRITICAL: Tests full workflow as if in a real chat
60
- logging.info("Running end-to-end chat simulation test...")
61
- self._run_chat_simulation_test()
62
-
63
  # Track initialization status
64
  self.memory_system_ready = self.memory_agent.is_ready()
65
  self.sentiment_analyzer_ready = self.sentiment_agent.is_ready()
@@ -87,156 +83,6 @@ class GalateaAI:
87
 
88
  logging.info("✓ All agents initialized and verified")
89
 
90
- def _run_chat_simulation_test(self):
91
- """Run a full end-to-end chat simulation test - simulates real chat interaction"""
92
- logging.info("=" * 60)
93
- logging.info("RUNNING END-TO-END CHAT SIMULATION TEST")
94
- logging.info("=" * 60)
95
-
96
- test_messages = [
97
- "Hello, how are you?",
98
- "What can you help me with?",
99
- "Tell me something interesting."
100
- ]
101
-
102
- test_results = {
103
- 'sentiment_analysis': False,
104
- 'emotional_state_update': False,
105
- 'memory_retrieval': False,
106
- 'gemini_thinking': False,
107
- 'pi_response': False,
108
- 'full_workflow': False
109
- }
110
-
111
- try:
112
- # Test with first message
113
- test_input = test_messages[0]
114
- logging.info(f"[Chat Simulation] Testing with message: '{test_input}'")
115
-
116
- # Step 1: Test sentiment analysis
117
- try:
118
- sentiment_score = self.sentiment_agent.analyze(test_input)
119
- if sentiment_score is not None and isinstance(sentiment_score, (int, float)):
120
- test_results['sentiment_analysis'] = True
121
- logging.info(f"[Chat Simulation] ✓ Sentiment analysis: {sentiment_score:.3f}")
122
- else:
123
- raise RuntimeError("Sentiment analysis returned invalid result")
124
- except Exception as e:
125
- logging.error(f"[Chat Simulation] ✗ Sentiment analysis failed: {e}")
126
- raise RuntimeError(f"Sentiment analysis failed during chat simulation: {e}")
127
-
128
- # Step 2: Test emotional state update
129
- try:
130
- initial_state = self.emotional_agent.get_state().copy()
131
- self.emotional_agent.update_with_sentiment(sentiment_score)
132
- updated_state = self.emotional_agent.get_state()
133
- if updated_state and isinstance(updated_state, dict) and len(updated_state) > 0:
134
- test_results['emotional_state_update'] = True
135
- logging.info(f"[Chat Simulation] ✓ Emotional state updated: {updated_state}")
136
- else:
137
- raise RuntimeError("Emotional state update returned invalid state")
138
- except Exception as e:
139
- logging.error(f"[Chat Simulation] ✗ Emotional state update failed: {e}")
140
- raise RuntimeError(f"Emotional state update failed during chat simulation: {e}")
141
-
142
- # Step 3: Test memory retrieval
143
- try:
144
- keywords = self.extract_keywords(test_input)
145
- retrieved_memories = self.memory_agent.retrieve_memories(test_input)
146
- if retrieved_memories is not None:
147
- test_results['memory_retrieval'] = True
148
- logging.info(f"[Chat Simulation] ✓ Memory retrieval: {len(retrieved_memories)} memories found")
149
- else:
150
- raise RuntimeError("Memory retrieval returned None")
151
- except Exception as e:
152
- logging.error(f"[Chat Simulation] ✗ Memory retrieval failed: {e}")
153
- raise RuntimeError(f"Memory retrieval failed during chat simulation: {e}")
154
-
155
- # Step 4: Test Gemini thinking
156
- try:
157
- current_emotional_state = self.emotional_agent.get_state()
158
- thinking_context = self.gemini_agent.think(
159
- test_input,
160
- current_emotional_state,
161
- self.conversation_history,
162
- retrieved_memories=retrieved_memories
163
- )
164
- if thinking_context and len(thinking_context) > 0:
165
- test_results['gemini_thinking'] = True
166
- logging.info(f"[Chat Simulation] ✓ Gemini thinking: {thinking_context[:100]}...")
167
- else:
168
- raise RuntimeError("Gemini thinking returned empty or None")
169
- except Exception as e:
170
- logging.error(f"[Chat Simulation] ✗ Gemini thinking failed: {e}")
171
- raise RuntimeError(f"Gemini thinking failed during chat simulation: {e}")
172
-
173
- # Step 5: Test Pi-3.1 response generation
174
- try:
175
- response = self.pi_agent.respond(
176
- test_input,
177
- current_emotional_state,
178
- thinking_context=thinking_context,
179
- conversation_history=self.conversation_history,
180
- retrieved_memories=retrieved_memories
181
- )
182
- if response and len(response) > 0:
183
- test_results['pi_response'] = True
184
- logging.info(f"[Chat Simulation] ✓ Pi-3.1 response: {response[:100]}...")
185
- else:
186
- raise RuntimeError("Pi-3.1 response returned empty or None")
187
- except Exception as e:
188
- logging.error(f"[Chat Simulation] ✗ Pi-3.1 response failed: {e}")
189
- raise RuntimeError(f"Pi-3.1 response generation failed during chat simulation: {e}")
190
-
191
- # Step 6: Test full workflow using process_input
192
- try:
193
- # Reset conversation history for clean test
194
- original_history = self.conversation_history.copy()
195
- self.conversation_history = []
196
-
197
- full_response = self.process_input(test_input)
198
- if full_response and len(full_response) > 0:
199
- test_results['full_workflow'] = True
200
- logging.info(f"[Chat Simulation] ✓ Full workflow test: {full_response[:100]}...")
201
- else:
202
- raise RuntimeError("Full workflow test returned empty or None")
203
-
204
- # Restore conversation history
205
- self.conversation_history = original_history
206
- except Exception as e:
207
- logging.error(f"[Chat Simulation] ✗ Full workflow test failed: {e}")
208
- raise RuntimeError(f"Full workflow test failed during chat simulation: {e}")
209
-
210
- # Print summary
211
- logging.info("=" * 60)
212
- logging.info("CHAT SIMULATION TEST SUMMARY")
213
- logging.info("=" * 60)
214
- for test_name, result in test_results.items():
215
- status = "✓ PASSED" if result else "✗ FAILED"
216
- logging.info(f"{status} - {test_name.upper().replace('_', ' ')}")
217
- logging.info("=" * 60)
218
-
219
- # CRITICAL: Verify all tests passed
220
- if not all(test_results.values()):
221
- failed_tests = [name for name, result in test_results.items() if not result]
222
- error_msg = f"CRITICAL: Chat simulation tests failed for: {', '.join(failed_tests).upper()}. Application cannot continue."
223
- logging.error("=" * 60)
224
- logging.error(error_msg)
225
- logging.error("=" * 60)
226
- raise RuntimeError(error_msg)
227
-
228
- logging.info("✓ All chat simulation tests passed - system ready for production use")
229
-
230
- except RuntimeError:
231
- # Re-raise RuntimeError as-is (already has proper error message)
232
- raise
233
- except Exception as e:
234
- error_msg = f"CRITICAL: Chat simulation test failed with unexpected error: {e}"
235
- logging.error("=" * 60)
236
- logging.error(error_msg)
237
- logging.error("=" * 60)
238
- raise RuntimeError(error_msg)
239
-
240
  def _check_pre_initialization(self):
241
  """Check if components were pre-initialized by initialize_galatea.py"""
242
  # Check if JSON memory exists
 
56
  self.emotional_agent = EmotionalStateAgent(config=self.config)
57
  self.sentiment_agent = SentimentAgent(config=self.config)
58
 
 
 
 
 
59
  # Track initialization status
60
  self.memory_system_ready = self.memory_agent.is_ready()
61
  self.sentiment_analyzer_ready = self.sentiment_agent.is_ready()
 
83
 
84
  logging.info("✓ All agents initialized and verified")
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  def _check_pre_initialization(self):
87
  """Check if components were pre-initialized by initialize_galatea.py"""
88
  # Check if JSON memory exists
llm_wrapper.py CHANGED
@@ -166,7 +166,8 @@ class LLMWrapper:
166
 
167
  try:
168
  logging.info(f"[LLMWrapper] Calling Inflection AI API: {model_config}")
169
- logging.debug(f"[LLMWrapper] Request URL: {url}")
 
170
  logging.debug(f"[LLMWrapper] Request data: {data}")
171
  response = requests.post(url, headers=headers, json=data, timeout=30)
172
 
@@ -180,8 +181,9 @@ class LLMWrapper:
180
  logging.error(f"[LLMWrapper] Raw response text: {response.text[:500]}")
181
  return None
182
 
183
- logging.debug(f"[LLMWrapper] Response JSON: {result}")
184
  logging.info(f"[LLMWrapper] Response type: {type(result)}")
 
185
 
186
  # Extract response text - Inflection AI returns text in 'text' field
187
  # Based on actual API response: {"created": ..., "text": "...", "tool_calls": [], "reasoning_content": null}
 
166
 
167
  try:
168
  logging.info(f"[LLMWrapper] Calling Inflection AI API: {model_config}")
169
+ logging.info(f"[LLMWrapper] Request URL: {url}")
170
+ logging.info(f"[LLMWrapper] Request context parts count: {len(context_parts)}")
171
  logging.debug(f"[LLMWrapper] Request data: {data}")
172
  response = requests.post(url, headers=headers, json=data, timeout=30)
173
 
 
181
  logging.error(f"[LLMWrapper] Raw response text: {response.text[:500]}")
182
  return None
183
 
184
+ logging.info(f"[LLMWrapper] Response JSON: {result}")
185
  logging.info(f"[LLMWrapper] Response type: {type(result)}")
186
+ logging.info(f"[LLMWrapper] Response keys: {list(result.keys()) if isinstance(result, dict) else 'N/A'}")
187
 
188
  # Extract response text - Inflection AI returns text in 'text' field
189
  # Based on actual API response: {"created": ..., "text": "...", "tool_calls": [], "reasoning_content": null}