Spaces:
Sleeping
Sleeping
add reward net
Browse files
rlcube/rlcube/models/models.py
CHANGED
|
@@ -2,6 +2,27 @@ import torch.nn as nn
|
|
| 2 |
import torch.nn.functional as F
|
| 3 |
import torch
|
| 4 |
from tensordict import TensorDict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class ResidualBlock(nn.Module):
|
|
@@ -54,10 +75,21 @@ class DNN(nn.Module):
|
|
| 54 |
|
| 55 |
|
| 56 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
print("Testing ResidualBlock, input_dim=24, hidden_dim=128")
|
| 58 |
x = torch.randn(4, 24, 6)
|
| 59 |
print("Input shape:", x.shape)
|
| 60 |
print("Output shape:", ResidualBlock(6, 128)(x).shape)
|
|
|
|
| 61 |
|
| 62 |
print("Testing Cube2VNetwork, input_dim=24, num_residual_blocks=4")
|
| 63 |
x = torch.randn(4, 24, 6)
|
|
|
|
| 2 |
import torch.nn.functional as F
|
| 3 |
import torch
|
| 4 |
from tensordict import TensorDict
|
| 5 |
+
from rlcube.envs.cube2 import Cube2
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class RewardNet(nn.Module):
|
| 10 |
+
def __init__(self):
|
| 11 |
+
super(RewardNet, self).__init__()
|
| 12 |
+
|
| 13 |
+
def forward(self, batch_obs):
|
| 14 |
+
one_indices = batch_obs.argmax(dim=2)
|
| 15 |
+
# (batch, 24) -> (batch, 6, 4), 6 faces, 4 stickers
|
| 16 |
+
face_indices = one_indices.view(batch_obs.shape[0], 6, 4)
|
| 17 |
+
# (batch, 6), For each face, check if all stickers have the same index, i.e. compare with the first sticker
|
| 18 |
+
face_solved = (face_indices == face_indices[:, :, 0:1]).all(dim=2) #
|
| 19 |
+
# (batch,), For each batch, check if all faces are solved
|
| 20 |
+
solved = face_solved.all(dim=1)
|
| 21 |
+
return torch.where(
|
| 22 |
+
solved,
|
| 23 |
+
torch.tensor(1, device=batch_obs.device, dtype=batch_obs.dtype),
|
| 24 |
+
torch.tensor(-1, device=batch_obs.device, dtype=batch_obs.dtype),
|
| 25 |
+
)
|
| 26 |
|
| 27 |
|
| 28 |
class ResidualBlock(nn.Module):
|
|
|
|
| 75 |
|
| 76 |
|
| 77 |
if __name__ == "__main__":
|
| 78 |
+
print("Testing RewardNet")
|
| 79 |
+
env = Cube2()
|
| 80 |
+
obs, _ = env.reset()
|
| 81 |
+
obs1, _, _, _, _ = env.step(1)
|
| 82 |
+
obs2, _, _, _, _ = env.step(2)
|
| 83 |
+
x = torch.tensor(np.array([obs, obs1, obs2]))
|
| 84 |
+
print("Input shape:", x.shape)
|
| 85 |
+
print("Output:", RewardNet()(x))
|
| 86 |
+
print()
|
| 87 |
+
|
| 88 |
print("Testing ResidualBlock, input_dim=24, hidden_dim=128")
|
| 89 |
x = torch.randn(4, 24, 6)
|
| 90 |
print("Input shape:", x.shape)
|
| 91 |
print("Output shape:", ResidualBlock(6, 128)(x).shape)
|
| 92 |
+
print()
|
| 93 |
|
| 94 |
print("Testing Cube2VNetwork, input_dim=24, num_residual_blocks=4")
|
| 95 |
x = torch.randn(4, 24, 6)
|