Spaces:
Sleeping
Sleeping
implement search
Browse files- rlcube/cube2.ipynb +167 -58
- rlcube/rlcube/models/search.py +95 -0
rlcube/cube2.ipynb
CHANGED
|
@@ -40,7 +40,6 @@
|
|
| 40 |
"source": [
|
| 41 |
"from rlcube.models.models import DNN\n",
|
| 42 |
"from rlcube.envs.cube2 import Cube2Env\n",
|
| 43 |
-
"import numpy as np\n",
|
| 44 |
"import torch\n",
|
| 45 |
"\n",
|
| 46 |
"net = DNN()\n",
|
|
@@ -50,81 +49,191 @@
|
|
| 50 |
},
|
| 51 |
{
|
| 52 |
"cell_type": "code",
|
| 53 |
-
"execution_count":
|
| 54 |
"id": "16736f3a",
|
| 55 |
"metadata": {},
|
| 56 |
"outputs": [
|
| 57 |
{
|
| 58 |
-
"name": "
|
| 59 |
"output_type": "stream",
|
| 60 |
"text": [
|
| 61 |
-
"
|
| 62 |
-
"0.40487873554229736\n",
|
| 63 |
-
"4\n",
|
| 64 |
-
"\n",
|
| 65 |
-
"rotationController.setState([[0, 4, 0, 4], [1, 1, 5, 5], [2, 5, 2, 0], [3, 4, 3, 1], [4, 2, 1, 2], [5, 3, 0, 3]]);\n",
|
| 66 |
-
"0.0839405208826065\n",
|
| 67 |
-
"7\n",
|
| 68 |
-
"\n",
|
| 69 |
-
"rotationController.setState([[0, 4, 0, 4], [5, 1, 5, 1], [1, 5, 4, 0], [0, 4, 5, 1], [3, 2, 3, 2], [2, 3, 2, 3]]);\n",
|
| 70 |
-
"-0.23320673406124115\n",
|
| 71 |
-
"3\n",
|
| 72 |
-
"\n",
|
| 73 |
-
"rotationController.setState([[0, 5, 0, 1], [5, 4, 5, 0], [1, 5, 4, 4], [0, 4, 1, 1], [3, 3, 2, 2], [2, 3, 2, 3]]);\n",
|
| 74 |
-
"0.31869572401046753\n",
|
| 75 |
-
"0\n",
|
| 76 |
-
"\n",
|
| 77 |
-
"rotationController.setState([[5, 5, 1, 1], [4, 4, 0, 0], [5, 5, 4, 4], [0, 0, 1, 1], [3, 3, 2, 2], [3, 3, 2, 2]]);\n",
|
| 78 |
-
"-0.16905824840068817\n",
|
| 79 |
-
"7\n",
|
| 80 |
-
"\n",
|
| 81 |
-
"rotationController.setState([[5, 4, 1, 4], [4, 1, 0, 1], [5, 5, 4, 0], [0, 0, 5, 1], [3, 2, 3, 2], [3, 3, 2, 2]]);\n",
|
| 82 |
-
"0.20266102254390717\n",
|
| 83 |
-
"3\n",
|
| 84 |
-
"\n",
|
| 85 |
-
"rotationController.setState([[2, 3, 1, 4], [3, 3, 0, 1], [5, 5, 4, 0], [0, 1, 0, 5], [4, 1, 3, 2], [5, 4, 2, 2]]);\n",
|
| 86 |
-
"0.6111429333686829\n",
|
| 87 |
-
"3\n",
|
| 88 |
-
"\n",
|
| 89 |
-
"rotationController.setState([[2, 0, 1, 4], [3, 5, 0, 0], [5, 5, 3, 1], [0, 1, 3, 4], [1, 2, 4, 3], [5, 4, 2, 2]]);\n",
|
| 90 |
-
"1.3550236225128174\n",
|
| 91 |
-
"2\n",
|
| 92 |
-
"\n",
|
| 93 |
-
"rotationController.setState([[0, 0, 1, 4], [5, 5, 5, 0], [1, 2, 3, 1], [0, 3, 3, 4], [1, 2, 4, 3], [2, 5, 2, 4]]);\n",
|
| 94 |
-
"0.9975889325141907\n",
|
| 95 |
-
"7\n",
|
| 96 |
-
"\n",
|
| 97 |
-
"rotationController.setState([[2, 0, 1, 4], [3, 5, 0, 0], [5, 5, 3, 1], [0, 1, 3, 4], [1, 2, 4, 3], [5, 4, 2, 2]]);\n",
|
| 98 |
-
"1.3550236225128174\n",
|
| 99 |
-
"2\n",
|
| 100 |
-
"\n"
|
| 101 |
]
|
| 102 |
}
|
| 103 |
],
|
| 104 |
"source": [
|
| 105 |
-
"
|
| 106 |
-
"env = Cube2Env()\n",
|
| 107 |
-
"for _ in range(10):\n",
|
| 108 |
-
" obs, _, _, _, _ = env.step(env.action_space.sample())\n",
|
| 109 |
-
" batch_obs.append(torch.tensor(obs, dtype=torch.float32))\n",
|
| 110 |
-
"batched_obs = torch.stack(batch_obs)\n",
|
| 111 |
-
"out = net(batched_obs)\n",
|
| 112 |
"\n",
|
| 113 |
-
"
|
| 114 |
-
"
|
| 115 |
-
"
|
| 116 |
-
"
|
| 117 |
-
"
|
| 118 |
-
"
|
|
|
|
| 119 |
]
|
| 120 |
},
|
| 121 |
{
|
| 122 |
"cell_type": "code",
|
| 123 |
-
"execution_count":
|
| 124 |
"id": "aee2a911",
|
| 125 |
"metadata": {},
|
| 126 |
"outputs": [],
|
| 127 |
-
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
}
|
| 129 |
],
|
| 130 |
"metadata": {
|
|
|
|
| 40 |
"source": [
|
| 41 |
"from rlcube.models.models import DNN\n",
|
| 42 |
"from rlcube.envs.cube2 import Cube2Env\n",
|
|
|
|
| 43 |
"import torch\n",
|
| 44 |
"\n",
|
| 45 |
"net = DNN()\n",
|
|
|
|
| 49 |
},
|
| 50 |
{
|
| 51 |
"cell_type": "code",
|
| 52 |
+
"execution_count": 2,
|
| 53 |
"id": "16736f3a",
|
| 54 |
"metadata": {},
|
| 55 |
"outputs": [
|
| 56 |
{
|
| 57 |
+
"name": "stderr",
|
| 58 |
"output_type": "stream",
|
| 59 |
"text": [
|
| 60 |
+
"100%|██████████| 300/300 [00:02<00:00, 132.06it/s]\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
]
|
| 62 |
}
|
| 63 |
],
|
| 64 |
"source": [
|
| 65 |
+
"from rlcube.models.search import MonteCarloTree\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
"\n",
|
| 67 |
+
"env = Cube2Env()\n",
|
| 68 |
+
"actions = []\n",
|
| 69 |
+
"for _ in range(3):\n",
|
| 70 |
+
" action = env.action_space.sample()\n",
|
| 71 |
+
" actions.append(action)\n",
|
| 72 |
+
" env.step(action)\n",
|
| 73 |
+
"tree = MonteCarloTree(env.obs())"
|
| 74 |
]
|
| 75 |
},
|
| 76 |
{
|
| 77 |
"cell_type": "code",
|
| 78 |
+
"execution_count": 3,
|
| 79 |
"id": "aee2a911",
|
| 80 |
"metadata": {},
|
| 81 |
"outputs": [],
|
| 82 |
+
"source": [
|
| 83 |
+
"node = tree.root"
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"cell_type": "code",
|
| 88 |
+
"execution_count": 4,
|
| 89 |
+
"id": "048f58c9",
|
| 90 |
+
"metadata": {},
|
| 91 |
+
"outputs": [
|
| 92 |
+
{
|
| 93 |
+
"data": {
|
| 94 |
+
"text/plain": [
|
| 95 |
+
"[np.int64(8), np.int64(1), np.int64(4)]"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
"execution_count": 4,
|
| 99 |
+
"metadata": {},
|
| 100 |
+
"output_type": "execute_result"
|
| 101 |
+
}
|
| 102 |
+
],
|
| 103 |
+
"source": [
|
| 104 |
+
"actions"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"cell_type": "code",
|
| 109 |
+
"execution_count": 5,
|
| 110 |
+
"id": "00994021",
|
| 111 |
+
"metadata": {},
|
| 112 |
+
"outputs": [
|
| 113 |
+
{
|
| 114 |
+
"data": {
|
| 115 |
+
"text/plain": [
|
| 116 |
+
"tensor([3.4725e+00, 3.3189e+00, 1.2619e-02, 3.1231e-01, 1.1286e-02, 2.5817e-02,\n",
|
| 117 |
+
" 1.6722e-02, 2.1334e-02, 3.4603e+00, 7.5021e-02, 2.5891e-02, 2.8712e-03])"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
"execution_count": 5,
|
| 121 |
+
"metadata": {},
|
| 122 |
+
"output_type": "execute_result"
|
| 123 |
+
}
|
| 124 |
+
],
|
| 125 |
+
"source": [
|
| 126 |
+
"node.u()"
|
| 127 |
+
]
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"cell_type": "code",
|
| 131 |
+
"execution_count": 6,
|
| 132 |
+
"id": "fb9ac54c",
|
| 133 |
+
"metadata": {},
|
| 134 |
+
"outputs": [
|
| 135 |
+
{
|
| 136 |
+
"data": {
|
| 137 |
+
"text/plain": [
|
| 138 |
+
"defaultdict(<function rlcube.models.search.Node.__init__.<locals>.<lambda>()>,\n",
|
| 139 |
+
" {0: 276,\n",
|
| 140 |
+
" 1: 7,\n",
|
| 141 |
+
" 2: 0,\n",
|
| 142 |
+
" 3: 0,\n",
|
| 143 |
+
" 4: 0,\n",
|
| 144 |
+
" 5: 0,\n",
|
| 145 |
+
" 6: 0,\n",
|
| 146 |
+
" 7: 0,\n",
|
| 147 |
+
" 8: 16,\n",
|
| 148 |
+
" 9: 0,\n",
|
| 149 |
+
" 10: 0,\n",
|
| 150 |
+
" 11: 0})"
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
"execution_count": 6,
|
| 154 |
+
"metadata": {},
|
| 155 |
+
"output_type": "execute_result"
|
| 156 |
+
}
|
| 157 |
+
],
|
| 158 |
+
"source": [
|
| 159 |
+
"node.N"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"execution_count": 7,
|
| 165 |
+
"id": "2f8a09d1",
|
| 166 |
+
"metadata": {},
|
| 167 |
+
"outputs": [
|
| 168 |
+
{
|
| 169 |
+
"data": {
|
| 170 |
+
"text/plain": [
|
| 171 |
+
"defaultdict(<function rlcube.models.search.Node.__init__.<locals>.<lambda>()>,\n",
|
| 172 |
+
" {0: tensor([3.4720]),\n",
|
| 173 |
+
" 1: tensor([1.8959]),\n",
|
| 174 |
+
" 2: 0,\n",
|
| 175 |
+
" 3: 0,\n",
|
| 176 |
+
" 4: 0,\n",
|
| 177 |
+
" 5: 0,\n",
|
| 178 |
+
" 6: 0,\n",
|
| 179 |
+
" 7: 0,\n",
|
| 180 |
+
" 8: tensor([2.7285]),\n",
|
| 181 |
+
" 9: 0,\n",
|
| 182 |
+
" 10: 0,\n",
|
| 183 |
+
" 11: 0})"
|
| 184 |
+
]
|
| 185 |
+
},
|
| 186 |
+
"execution_count": 7,
|
| 187 |
+
"metadata": {},
|
| 188 |
+
"output_type": "execute_result"
|
| 189 |
+
}
|
| 190 |
+
],
|
| 191 |
+
"source": [
|
| 192 |
+
"node.W"
|
| 193 |
+
]
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"cell_type": "code",
|
| 197 |
+
"execution_count": 8,
|
| 198 |
+
"id": "3e341459",
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"outputs": [
|
| 201 |
+
{
|
| 202 |
+
"data": {
|
| 203 |
+
"text/plain": [
|
| 204 |
+
"defaultdict(<function rlcube.models.search.Node.__init__.<locals>.<lambda>()>,\n",
|
| 205 |
+
" {0: 4,\n",
|
| 206 |
+
" 1: 0,\n",
|
| 207 |
+
" 2: 0,\n",
|
| 208 |
+
" 3: 0,\n",
|
| 209 |
+
" 4: 0,\n",
|
| 210 |
+
" 5: 2,\n",
|
| 211 |
+
" 6: 0,\n",
|
| 212 |
+
" 7: 0,\n",
|
| 213 |
+
" 8: 269,\n",
|
| 214 |
+
" 9: 0,\n",
|
| 215 |
+
" 10: 0,\n",
|
| 216 |
+
" 11: 0})"
|
| 217 |
+
]
|
| 218 |
+
},
|
| 219 |
+
"execution_count": 8,
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"output_type": "execute_result"
|
| 222 |
+
}
|
| 223 |
+
],
|
| 224 |
+
"source": [
|
| 225 |
+
"node.children[0].N"
|
| 226 |
+
]
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"cell_type": "code",
|
| 230 |
+
"execution_count": null,
|
| 231 |
+
"id": "51dddf56",
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"outputs": [],
|
| 234 |
+
"source": [
|
| 235 |
+
"node.children[8].N"
|
| 236 |
+
]
|
| 237 |
}
|
| 238 |
],
|
| 239 |
"metadata": {
|
rlcube/rlcube/models/search.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import defaultdict
|
| 2 |
+
import torch
|
| 3 |
+
from rlcube.models.models import DNN
|
| 4 |
+
from rlcube.envs.cube2 import Cube2Env
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
net = DNN()
|
| 8 |
+
net.load("models/model_best.pth")
|
| 9 |
+
net.eval()
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class Node:
|
| 13 |
+
def __init__(self, obs, parent=None):
|
| 14 |
+
self.obs = torch.tensor(obs, dtype=torch.float32)
|
| 15 |
+
self.parent = parent
|
| 16 |
+
|
| 17 |
+
out = net(self.obs.unsqueeze(0))
|
| 18 |
+
value = out["value"].detach()
|
| 19 |
+
policy = torch.softmax(out["policy"].detach(), dim=1)
|
| 20 |
+
|
| 21 |
+
self.is_solved = Cube2Env.from_obs(obs).is_solved()
|
| 22 |
+
self.value = torch.tensor(1) if self.is_solved else value.view(-1)
|
| 23 |
+
self.policy = policy.view(-1)
|
| 24 |
+
|
| 25 |
+
self.children = defaultdict(lambda: None)
|
| 26 |
+
self.N = defaultdict(lambda: 0)
|
| 27 |
+
self.W = defaultdict(lambda: 0)
|
| 28 |
+
|
| 29 |
+
def is_leaf(self):
|
| 30 |
+
return len(self.children) == 0
|
| 31 |
+
|
| 32 |
+
def u(self):
|
| 33 |
+
c = 1.414
|
| 34 |
+
n_sum = torch.sum(torch.tensor([self.N[action] for action in range(12)]))
|
| 35 |
+
u = torch.tensor(
|
| 36 |
+
[
|
| 37 |
+
c
|
| 38 |
+
* self.policy[action].item()
|
| 39 |
+
* torch.sqrt(n_sum)
|
| 40 |
+
/ (self.N[action] + 1)
|
| 41 |
+
+ self.W[action]
|
| 42 |
+
for action in range(12)
|
| 43 |
+
]
|
| 44 |
+
)
|
| 45 |
+
return u
|
| 46 |
+
|
| 47 |
+
def select_action(self):
|
| 48 |
+
return torch.argmax(self.u()).item()
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class MonteCarloTree:
|
| 52 |
+
def __init__(self, obs, max_simulations=300):
|
| 53 |
+
self.obs = obs
|
| 54 |
+
self.max_simulations = max_simulations
|
| 55 |
+
self.root = Node(obs)
|
| 56 |
+
self.nodes = [self.root]
|
| 57 |
+
self.is_solved = False
|
| 58 |
+
self._build()
|
| 59 |
+
|
| 60 |
+
def _build(self):
|
| 61 |
+
for _ in tqdm(range(self.max_simulations)):
|
| 62 |
+
if self.is_solved:
|
| 63 |
+
break
|
| 64 |
+
|
| 65 |
+
node = self.root
|
| 66 |
+
path = []
|
| 67 |
+
|
| 68 |
+
# Selection
|
| 69 |
+
while not node.is_leaf():
|
| 70 |
+
action = node.select_action()
|
| 71 |
+
path.append((node, action))
|
| 72 |
+
node = node.children[action]
|
| 73 |
+
|
| 74 |
+
# Expansion
|
| 75 |
+
env = Cube2Env.from_obs(node.obs)
|
| 76 |
+
adjacent_obs = env.adjacent_obs()
|
| 77 |
+
for i in range(12):
|
| 78 |
+
obs = adjacent_obs[i]
|
| 79 |
+
child = Node(obs, node)
|
| 80 |
+
node.children[i] = child
|
| 81 |
+
self.nodes.append(child)
|
| 82 |
+
self.is_solved = self.is_solved or child.is_solved
|
| 83 |
+
|
| 84 |
+
# Backup
|
| 85 |
+
for parent, action in reversed(path):
|
| 86 |
+
parent.N[action] += 1
|
| 87 |
+
parent.W[action] = max(parent.W[action], node.value)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
if __name__ == "__main__":
|
| 91 |
+
env = Cube2Env()
|
| 92 |
+
for _ in range(3):
|
| 93 |
+
env.step(env.action_space.sample())
|
| 94 |
+
tree = MonteCarloTree(env.obs())
|
| 95 |
+
print(tree.is_solved)
|