Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,19 +5,13 @@ import gradio as gr
|
|
| 5 |
import pandas as pd
|
| 6 |
import pandera as pa
|
| 7 |
from pandera import Column
|
| 8 |
-
import
|
| 9 |
-
from dataprep.eda import compute
|
| 10 |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
|
| 11 |
-
from .utils import (
|
| 12 |
-
format_num_stats, format_cat_stats,
|
| 13 |
-
format_ov_stats, format_insights
|
| 14 |
-
)
|
| 15 |
from langsmith import traceable
|
| 16 |
from langchain import hub
|
| 17 |
import warnings
|
| 18 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
| 19 |
|
| 20 |
-
|
| 21 |
# Height of the Tabs Text Area
|
| 22 |
TAB_LINES = 8
|
| 23 |
|
|
@@ -43,7 +37,7 @@ for model in models:
|
|
| 43 |
print(f"Error for model {model}: {e}")
|
| 44 |
continue
|
| 45 |
|
| 46 |
-
llm = ChatHuggingFace(llm=endpoint).bind(max_tokens=
|
| 47 |
#---------------------------------------
|
| 48 |
|
| 49 |
#-----LOAD PROMPT FROM LANCHAIN HUB-----
|
|
@@ -69,98 +63,44 @@ def get_tables_names(schema_name):
|
|
| 69 |
def update_table_names(schema_name):
|
| 70 |
tables = get_tables_names(schema_name)
|
| 71 |
return gr.update(choices=tables)
|
| 72 |
-
|
| 73 |
-
# Get Schema
|
| 74 |
-
def get_table_schema(table):
|
| 75 |
-
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
|
| 76 |
-
ddl_create = result.iloc[0,0]
|
| 77 |
-
parent_database = result.iloc[0,1]
|
| 78 |
-
schema_name = result.iloc[0,2]
|
| 79 |
-
full_path = f"{parent_database}.{schema_name}.{table}"
|
| 80 |
-
if schema_name != "main":
|
| 81 |
-
old_path = f"{schema_name}.{table}"
|
| 82 |
-
else:
|
| 83 |
-
old_path = table
|
| 84 |
-
ddl_create = ddl_create.replace(old_path, full_path)
|
| 85 |
-
return full_path
|
| 86 |
-
|
| 87 |
def get_data_df(schema):
|
| 88 |
print('Getting Dataframe from the Database')
|
| 89 |
return conn.sql(f"SELECT * FROM {schema} LIMIT 1000").df()
|
| 90 |
|
| 91 |
-
<<<<<<< HEAD
|
| 92 |
-
def calcualte_stats(df):
|
| 93 |
-
indev_stats = []
|
| 94 |
-
cols = []
|
| 95 |
-
|
| 96 |
-
_df = df.copy()
|
| 97 |
-
|
| 98 |
-
num_cols = _df.select_dtypes(include=['number'], exclude=['datetime']).columns
|
| 99 |
-
cat_cols = _df.select_dtypes(include=['object'], exclude=['datetime']).columns
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
_all_stats = compute(_df)
|
| 103 |
-
all_stats = format_ov_stats(_all_stats['stats'])
|
| 104 |
-
insights = format_insights(_all_stats['overview_insights'])
|
| 105 |
-
|
| 106 |
-
for i, col in enumerate(random.sample(num_cols.tolist()+cat_cols.tolist(), 2)):
|
| 107 |
-
_indv_data = compute(_df, col)
|
| 108 |
-
|
| 109 |
-
if col in cat_cols:
|
| 110 |
-
indev_data_cat = format_cat_stats(_indv_data["data"])
|
| 111 |
-
|
| 112 |
-
indev_stats.append(pd.DataFrame([indev_data_cat['Overview']], index=[f'{col}_stats']).T)
|
| 113 |
-
|
| 114 |
-
elif col in num_cols:
|
| 115 |
-
try:
|
| 116 |
-
indev_data_num = format_num_stats(_indv_data["data"])
|
| 117 |
-
except:
|
| 118 |
-
indev_data_num = format_cat_stats(_indv_data["data"])
|
| 119 |
-
|
| 120 |
-
indev_stats.append(pd.DataFrame([indev_data_num['Overview']], index=[f'{col}_stats']).T)
|
| 121 |
-
|
| 122 |
-
return {
|
| 123 |
-
"overall_stats": pd.DataFrame(all_stats[0], index=['Dataset Statistics']).T,
|
| 124 |
-
"insights": insights,
|
| 125 |
-
"stats_1": indev_stats[0],
|
| 126 |
-
"stats_2": indev_stats[1]
|
| 127 |
-
}
|
| 128 |
-
|
| 129 |
def df_summary(df):
|
| 130 |
summary = []
|
| 131 |
|
| 132 |
for column in df.columns:
|
| 133 |
if pd.api.types.is_numeric_dtype(df[column]):
|
| 134 |
summary.append({
|
| 135 |
-
"column": column,
|
| 136 |
-
"
|
| 137 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
})
|
| 139 |
|
| 140 |
elif pd.api.types.is_categorical_dtype(df[column]) or pd.api.types.is_object_dtype(df[column]):
|
| 141 |
top_value = df[column].mode().iloc[0] if not df[column].mode().empty else None
|
| 142 |
|
| 143 |
summary.append({
|
| 144 |
-
"column": column,
|
| 145 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
})
|
| 147 |
-
|
| 148 |
summary_df = pd.DataFrame(summary)
|
| 149 |
return summary_df.reset_index(drop=True)
|
| 150 |
-
=======
|
| 151 |
-
>>>>>>> parent of 7c2e7ac (Summary Added)
|
| 152 |
|
| 153 |
def format_prompt(df):
|
| 154 |
-
|
| 155 |
-
"max": df.max(),
|
| 156 |
-
"min": df.min(),
|
| 157 |
-
"top": df.mode().iloc[0],
|
| 158 |
-
"nunique": df.nunique(),
|
| 159 |
-
"count": df.count(),
|
| 160 |
-
"dtype": df.dtypes.astype(str)
|
| 161 |
-
}).reset_index().rename(columns={"index": "column"})
|
| 162 |
return prompt_autogenerate.format_prompt(data=df.head().to_json(orient='records'),
|
| 163 |
-
summary=
|
| 164 |
def format_user_prompt(df):
|
| 165 |
return prompt_user_input.format_prompt(data=df.head().to_json(orient='records'))
|
| 166 |
|
|
@@ -177,6 +117,33 @@ def run_llm(messages):
|
|
| 177 |
return tests
|
| 178 |
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
def validate_pandera(tests, df):
|
| 181 |
validation_results = []
|
| 182 |
|
|
@@ -196,6 +163,41 @@ def validate_pandera(tests, df):
|
|
| 196 |
})
|
| 197 |
return pd.DataFrame(validation_results)
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
#---------------------------------------
|
| 200 |
|
| 201 |
|
|
@@ -204,26 +206,22 @@ def validate_pandera(tests, df):
|
|
| 204 |
def main(table):
|
| 205 |
schema = get_table_schema(table)
|
| 206 |
df = get_data_df(schema)
|
| 207 |
-
|
|
|
|
|
|
|
| 208 |
messages = format_prompt(df=df)
|
| 209 |
tests = run_llm(messages)
|
| 210 |
print(tests)
|
| 211 |
|
| 212 |
-
stats = calcualte_stats(df)
|
| 213 |
-
df_insights = stats['insights']
|
| 214 |
-
df_statistics = stats['overall_stats']
|
| 215 |
-
df_stat_1 = stats['stats_1']
|
| 216 |
-
df_stat_2 = stats['stats_2']
|
| 217 |
-
|
| 218 |
if isinstance(tests, Exception):
|
| 219 |
tests = pd.DataFrame([{"error": f"❌ Unable to generate tests. {tests}"}])
|
| 220 |
-
return df.head(10), df_statistics,
|
| 221 |
|
| 222 |
tests_df = pd.DataFrame(tests)
|
| 223 |
tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
|
| 224 |
pandera_results = validate_pandera(tests, df)
|
| 225 |
|
| 226 |
-
return df.head(10), df_statistics,
|
| 227 |
|
| 228 |
def user_results(table, text_query):
|
| 229 |
|
|
@@ -328,3 +326,4 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"
|
|
| 328 |
if __name__ == "__main__":
|
| 329 |
demo.launch(debug=True)
|
| 330 |
|
|
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
import pandera as pa
|
| 7 |
from pandera import Column
|
| 8 |
+
import ydata_profiling as pp
|
|
|
|
| 9 |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from langsmith import traceable
|
| 11 |
from langchain import hub
|
| 12 |
import warnings
|
| 13 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
| 14 |
|
|
|
|
| 15 |
# Height of the Tabs Text Area
|
| 16 |
TAB_LINES = 8
|
| 17 |
|
|
|
|
| 37 |
print(f"Error for model {model}: {e}")
|
| 38 |
continue
|
| 39 |
|
| 40 |
+
llm = ChatHuggingFace(llm=endpoint).bind(max_tokens=8192)
|
| 41 |
#---------------------------------------
|
| 42 |
|
| 43 |
#-----LOAD PROMPT FROM LANCHAIN HUB-----
|
|
|
|
| 63 |
def update_table_names(schema_name):
|
| 64 |
tables = get_tables_names(schema_name)
|
| 65 |
return gr.update(choices=tables)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def get_data_df(schema):
|
| 67 |
print('Getting Dataframe from the Database')
|
| 68 |
return conn.sql(f"SELECT * FROM {schema} LIMIT 1000").df()
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
def df_summary(df):
|
| 71 |
summary = []
|
| 72 |
|
| 73 |
for column in df.columns:
|
| 74 |
if pd.api.types.is_numeric_dtype(df[column]):
|
| 75 |
summary.append({
|
| 76 |
+
"column": column,
|
| 77 |
+
"max": df[column].max(),
|
| 78 |
+
"min": df[column].min(),
|
| 79 |
+
"count": df[column].count(),
|
| 80 |
+
"nunique": df[column].nunique(),
|
| 81 |
+
"dtype": str(df[column].dtype),
|
| 82 |
+
"top": None
|
| 83 |
})
|
| 84 |
|
| 85 |
elif pd.api.types.is_categorical_dtype(df[column]) or pd.api.types.is_object_dtype(df[column]):
|
| 86 |
top_value = df[column].mode().iloc[0] if not df[column].mode().empty else None
|
| 87 |
|
| 88 |
summary.append({
|
| 89 |
+
"column": column,
|
| 90 |
+
"max": None,
|
| 91 |
+
"min": None,
|
| 92 |
+
"count": df[column].count(),
|
| 93 |
+
"nunique": df[column].nunique(),
|
| 94 |
+
"dtype": str(df[column].dtype),
|
| 95 |
+
"top": top_value
|
| 96 |
})
|
|
|
|
| 97 |
summary_df = pd.DataFrame(summary)
|
| 98 |
return summary_df.reset_index(drop=True)
|
|
|
|
|
|
|
| 99 |
|
| 100 |
def format_prompt(df):
|
| 101 |
+
summary = df_summary(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
return prompt_autogenerate.format_prompt(data=df.head().to_json(orient='records'),
|
| 103 |
+
summary=summary.to_json(orient='records'))
|
| 104 |
def format_user_prompt(df):
|
| 105 |
return prompt_user_input.format_prompt(data=df.head().to_json(orient='records'))
|
| 106 |
|
|
|
|
| 117 |
return tests
|
| 118 |
|
| 119 |
|
| 120 |
+
# Get Schema
|
| 121 |
+
def get_table_schema(table):
|
| 122 |
+
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
|
| 123 |
+
ddl_create = result.iloc[0,0]
|
| 124 |
+
parent_database = result.iloc[0,1]
|
| 125 |
+
schema_name = result.iloc[0,2]
|
| 126 |
+
full_path = f"{parent_database}.{schema_name}.{table}"
|
| 127 |
+
if schema_name != "main":
|
| 128 |
+
old_path = f"{schema_name}.{table}"
|
| 129 |
+
else:
|
| 130 |
+
old_path = table
|
| 131 |
+
ddl_create = ddl_create.replace(old_path, full_path)
|
| 132 |
+
return full_path
|
| 133 |
+
|
| 134 |
+
def describe(df):
|
| 135 |
+
|
| 136 |
+
numerical_info = pd.DataFrame()
|
| 137 |
+
categorical_info = pd.DataFrame()
|
| 138 |
+
if len(df.select_dtypes(include=['number']).columns) >= 1:
|
| 139 |
+
numerical_info = df.select_dtypes(include=['number']).describe().T.reset_index()
|
| 140 |
+
numerical_info.rename(columns={'index': 'column'}, inplace=True)
|
| 141 |
+
if len(df.select_dtypes(include=['object']).columns) >= 1:
|
| 142 |
+
categorical_info = df.select_dtypes(include=['object']).describe().T.reset_index()
|
| 143 |
+
categorical_info.rename(columns={'index': 'column'}, inplace=True)
|
| 144 |
+
|
| 145 |
+
return numerical_info, categorical_info
|
| 146 |
+
|
| 147 |
def validate_pandera(tests, df):
|
| 148 |
validation_results = []
|
| 149 |
|
|
|
|
| 163 |
})
|
| 164 |
return pd.DataFrame(validation_results)
|
| 165 |
|
| 166 |
+
def statistics(df):
|
| 167 |
+
profile = pp.ProfileReport(df)
|
| 168 |
+
report_dict = profile.get_description()
|
| 169 |
+
description, alerts = report_dict.table, report_dict.alerts
|
| 170 |
+
# Statistics
|
| 171 |
+
mapping = {
|
| 172 |
+
'n': 'Number of observations',
|
| 173 |
+
'n_var': 'Number of variables',
|
| 174 |
+
'n_cells_missing': 'Number of cells missing',
|
| 175 |
+
'n_vars_with_missing': 'Number of columns with missing data',
|
| 176 |
+
'n_vars_all_missing': 'Columns with all missing data',
|
| 177 |
+
'p_cells_missing': 'Missing cells (%)',
|
| 178 |
+
'n_duplicates': 'Duplicated rows',
|
| 179 |
+
'p_duplicates': 'Duplicated rows (%)',
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
updated_data = {mapping.get(k, k): v for k, v in description.items() if k != 'types'}
|
| 183 |
+
# Add flattened types information
|
| 184 |
+
if 'Text' in description.get('types', {}):
|
| 185 |
+
updated_data['Number of text columns'] = description['types']['Text']
|
| 186 |
+
if 'Categorical' in description.get('types', {}):
|
| 187 |
+
updated_data['Number of categorical columns'] = description['types']['Categorical']
|
| 188 |
+
if 'Numeric' in description.get('types', {}):
|
| 189 |
+
updated_data['Number of numeric columns'] = description['types']['Numeric']
|
| 190 |
+
if 'DateTime' in description.get('types', {}):
|
| 191 |
+
updated_data['Number of datetime columns'] = description['types']['DateTime']
|
| 192 |
+
|
| 193 |
+
df_statistics = pd.DataFrame(list(updated_data.items()), columns=['Statistic Description', 'Value'])
|
| 194 |
+
df_statistics['Value'] = df_statistics['Value'].astype(int)
|
| 195 |
+
|
| 196 |
+
# Alerts
|
| 197 |
+
alerts_list = [(str(alert).replace('[', '').replace(']', ''), alert.alert_type_name) for alert in alerts]
|
| 198 |
+
df_alerts = pd.DataFrame(alerts_list, columns=['Data Quality Issue', 'Category'])
|
| 199 |
+
|
| 200 |
+
return df_statistics, df_alerts
|
| 201 |
#---------------------------------------
|
| 202 |
|
| 203 |
|
|
|
|
| 206 |
def main(table):
|
| 207 |
schema = get_table_schema(table)
|
| 208 |
df = get_data_df(schema)
|
| 209 |
+
df_statistics, df_alerts = statistics(df)
|
| 210 |
+
describe_num, describe_cat = describe(df)
|
| 211 |
+
|
| 212 |
messages = format_prompt(df=df)
|
| 213 |
tests = run_llm(messages)
|
| 214 |
print(tests)
|
| 215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
if isinstance(tests, Exception):
|
| 217 |
tests = pd.DataFrame([{"error": f"❌ Unable to generate tests. {tests}"}])
|
| 218 |
+
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests, pd.DataFrame([])
|
| 219 |
|
| 220 |
tests_df = pd.DataFrame(tests)
|
| 221 |
tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
|
| 222 |
pandera_results = validate_pandera(tests, df)
|
| 223 |
|
| 224 |
+
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests_df, pandera_results
|
| 225 |
|
| 226 |
def user_results(table, text_query):
|
| 227 |
|
|
|
|
| 326 |
if __name__ == "__main__":
|
| 327 |
demo.launch(debug=True)
|
| 328 |
|
| 329 |
+
|