File size: 44,607 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
{
  "title": "Neural Networks Mastery: 100 MCQs",
  "description": "A comprehensive set of 100 multiple-choice questions designed to test and deepen your understanding of Neural Networks for classification tasks, covering fundamentals, architectures, activation functions, optimization, regularization, and practical scenarios.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the primary goal of a neural network for classification?",
      "options": [
        "Predict continuous values",
        "Reduce dimensionality of data",
        "Classify input data into predefined categories",
        "Cluster data points"
      ],
      "correctAnswerIndex": 2,
      "explanation": "For classification tasks, neural networks aim to predict discrete class labels for input data."
    },
    {
      "id": 2,
      "questionText": "What is an 'epoch' in neural network training?",
      "options": [
        "A single pass through the entire training dataset",
        "A type of activation function",
        "Number of hidden layers",
        "Number of neurons in a layer"
      ],
      "correctAnswerIndex": 0,
      "explanation": "An epoch is one complete pass through the training dataset during training."
    },
    {
      "id": 3,
      "questionText": "Which activation function is commonly used in hidden layers of neural networks?",
      "options": [
        "ReLU",
        "Softmax",
        "Sigmoid",
        "Linear"
      ],
      "correctAnswerIndex": 0,
      "explanation": "ReLU (Rectified Linear Unit) is commonly used in hidden layers due to its efficiency and ability to reduce vanishing gradient problems."
    },
    {
      "id": 4,
      "questionText": "Which activation function is typically used in the output layer for multi-class classification?",
      "options": [
        "ReLU",
        "Tanh",
        "Softmax",
        "Sigmoid"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Softmax outputs probabilities for each class and is used in multi-class classification."
    },
    {
      "id": 5,
      "questionText": "Scenario: A neural network predicts probabilities 0.7, 0.2, 0.1 for three classes. Which class is predicted?",
      "options": [
        "Class 2",
        "Class 3",
        "Class 1",
        "Cannot predict"
      ],
      "correctAnswerIndex": 2,
      "explanation": "The class with the highest probability (0.7) is chosen as the prediction."
    },
    {
      "id": 6,
      "questionText": "What is the role of weights in a neural network?",
      "options": [
        "Determine the strength of connections between neurons",
        "Provide output predictions",
        "Store input data",
        "Define the number of layers"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Weights determine how strongly a neuron's input influences its output."
    },
    {
      "id": 7,
      "questionText": "What is 'bias' in a neural network neuron?",
      "options": [
        "A learning rate parameter",
        "The output of a neuron",
        "Number of neurons in a layer",
        "A constant added to the weighted sum of inputs"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Bias allows the activation function to shift and helps the model fit data better."
    },
    {
      "id": 8,
      "questionText": "Scenario: A network overfits training data. What is a suitable remedy?",
      "options": [
        "Add dropout or regularization",
        "Reduce batch size",
        "Increase learning rate",
        "Use fewer neurons"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Dropout or regularization helps prevent overfitting by reducing reliance on specific neurons or large weights."
    },
    {
      "id": 9,
      "questionText": "What is 'forward propagation'?",
      "options": [
        "Computing output by passing inputs through the network layers",
        "Updating weights via backpropagation",
        "Shuffling the dataset",
        "Normalizing inputs"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Forward propagation computes the output by applying weights, biases, and activation functions through the network."
    },
    {
      "id": 10,
      "questionText": "What is 'backpropagation'?",
      "options": [
        "Activation function selection",
        "Forward pass of inputs",
        "Algorithm for updating weights using gradient descent",
        "Data preprocessing step"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Backpropagation computes gradients of the loss function with respect to weights to update them and minimize error."
    },
    {
      "id": 11,
      "questionText": "Scenario: Training loss decreases but validation loss increases. What is happening?",
      "options": [
        "Good fit",
        "Underfitting",
        "Overfitting",
        "Gradient vanishing"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Overfitting occurs when the model fits training data well but generalizes poorly to unseen data."
    },
    {
      "id": 12,
      "questionText": "Which optimizer adapts learning rates per parameter?",
      "options": [
        "Gradient Descent",
        "RMSProp",
        "Adam",
        "SGD"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Adam optimizer adapts learning rates for each parameter and combines benefits of RMSProp and momentum."
    },
    {
      "id": 13,
      "questionText": "Scenario: Neural network training is very slow. Which is a common solution?",
      "options": [
        "Use mini-batch gradient descent",
        "Remove activation functions",
        "Increase number of layers",
        "Increase epochs drastically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Mini-batch gradient descent speeds up training by updating weights on small batches rather than the entire dataset."
    },
    {
      "id": 14,
      "questionText": "What is the vanishing gradient problem?",
      "options": [
        "Activation function outputs zero always",
        "Loss increases during training",
        "Weights explode",
        "Gradients become too small to update weights effectively in deep networks"
      ],
      "correctAnswerIndex": 3,
      "explanation": "In deep networks with sigmoid or tanh, gradients can shrink, slowing or stopping learning."
    },
    {
      "id": 15,
      "questionText": "Scenario: A neuron uses sigmoid activation. Output is near 0. What can happen to gradient?",
      "options": [
        "Gradient is maximum",
        "Gradient is negative always",
        "Gradient becomes very small (vanishing gradient)",
        "Gradient does not change"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sigmoid outputs near 0 or 1 lead to small gradients, slowing learning."
    },
    {
      "id": 16,
      "questionText": "What is the purpose of softmax in classification?",
      "options": [
        "Convert logits into probability distribution over classes",
        "Compute loss function",
        "Reduce overfitting",
        "Normalize input features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Softmax converts raw output scores into probabilities summing to 1."
    },
    {
      "id": 17,
      "questionText": "Scenario: You have a 3-class classification problem. Which loss function is appropriate?",
      "options": [
        "Hinge loss",
        "Binary cross-entropy",
        "Mean squared error",
        "Categorical cross-entropy"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Categorical cross-entropy is suitable for multi-class classification."
    },
    {
      "id": 18,
      "questionText": "Scenario: Some features have different ranges. What should you do?",
      "options": [
        "Leave as is",
        "Normalize or standardize inputs",
        "Add dropout",
        "Change activation function"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Normalization/standardization helps the network train faster and converge better."
    },
    {
      "id": 19,
      "questionText": "Scenario: Too large learning rate causes:",
      "options": [
        "Exact solution",
        "No effect",
        "Divergence of loss",
        "Slow convergence"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Large learning rates can overshoot minima, causing loss to diverge."
    },
    {
      "id": 20,
      "questionText": "Scenario: Too small learning rate causes:",
      "options": [
        "Overfitting automatically",
        "Gradient explosion",
        "Slow convergence",
        "Divergence of loss"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Small learning rates lead to very slow weight updates and training."
    },
    {
      "id": 21,
      "questionText": "Scenario: You add more hidden layers but performance worsens. Likely reason?",
      "options": [
        "Loss function not needed",
        "Optimizer issue",
        "Overfitting or vanishing gradient",
        "Better learning"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Deep networks may overfit or suffer vanishing gradients if not designed properly."
    },
    {
      "id": 22,
      "questionText": "What is dropout?",
      "options": [
        "Feature scaling",
        "Randomly deactivating neurons during training to prevent overfitting",
        "Increasing neurons",
        "Reducing learning rate"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Dropout prevents co-adaptation of neurons and reduces overfitting."
    },
    {
      "id": 23,
      "questionText": "Scenario: Output layer has one neuron with sigmoid activation. Task?",
      "options": [
        "Binary classification",
        "Clustering",
        "Regression",
        "Multi-class classification"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Sigmoid outputs a probability between 0 and 1, suitable for binary classification."
    },
    {
      "id": 24,
      "questionText": "Scenario: You have imbalanced classes. How to adjust training?",
      "options": [
        "Reduce batch size",
        "Change activation to ReLU",
        "Use class weights or oversample minority class",
        "Ignore imbalance"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Class weights or oversampling helps prevent bias toward majority class."
    },
    {
      "id": 25,
      "questionText": "Scenario: Confusion matrix shows high false positives. What can you adjust?",
      "options": [
        "Number of epochs",
        "Dropout rate",
        "Learning rate",
        "Decision threshold"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Adjusting threshold balances sensitivity and specificity."
    },
    {
      "id": 26,
      "questionText": "What is the effect of batch normalization?",
      "options": [
        "Stabilizes learning by normalizing activations",
        "Reduces learning rate",
        "Increases overfitting",
        "Removes activation functions"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Batch normalization reduces internal covariate shift, speeding up training and improving performance."
    },
    {
      "id": 27,
      "questionText": "Scenario: Input features are categorical. How to use in neural network?",
      "options": [
        "Convert to embeddings or one-hot encoding",
        "Use raw categories directly",
        "Ignore categorical features",
        "Convert to random numbers"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Neural networks require numeric input; categorical data must be encoded."
    },
    {
      "id": 28,
      "questionText": "Scenario: Network predictions are confident but wrong. Likely cause?",
      "options": [
        "Overfitting or biased data",
        "Gradient vanishing",
        "Dropout too high",
        "Learning rate too small"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Overfitting or data bias can lead to confident wrong predictions."
    },
    {
      "id": 29,
      "questionText": "Scenario: Adding more neurons improves training but not validation. Reason?",
      "options": [
        "Overfitting",
        "Underfitting",
        "Vanishing gradient",
        "Poor initialization"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Increased model capacity fits training data but harms generalization."
    },
    {
      "id": 30,
      "questionText": "Scenario: Outputs are probabilities. How to compute loss for classification?",
      "options": [
        "Use cross-entropy loss",
        "Mean squared error",
        "Hinge loss",
        "Absolute error"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Cross-entropy loss is standard for probability-based classification outputs."
    },
    {
      "id": 31,
      "questionText": "Scenario: You notice your model is underfitting. Which is a possible solution?",
      "options": [
        "Apply more dropout",
        "Increase network capacity (more layers/neurons)",
        "Reduce training data",
        "Decrease learning rate"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Increasing network capacity allows the model to learn more complex patterns and reduce underfitting."
    },
    {
      "id": 32,
      "questionText": "Scenario: Your network is overfitting. Which regularization technique helps?",
      "options": [
        "Increasing learning rate",
        "L1 or L2 regularization",
        "Adding more layers",
        "Removing batch normalization"
      ],
      "correctAnswerIndex": 1,
      "explanation": "L1 or L2 regularization penalizes large weights, reducing overfitting."
    },
    {
      "id": 33,
      "questionText": "Scenario: You apply dropout during training. What is its effect during inference?",
      "options": [
        "Dropout continues randomly",
        "No dropout is applied; weights are scaled",
        "Network outputs zeros",
        "Learning rate changes automatically"
      ],
      "correctAnswerIndex": 1,
      "explanation": "During inference, dropout is disabled and weights are scaled to maintain output expectations."
    },
    {
      "id": 34,
      "questionText": "Scenario: Your network’s loss oscillates during training. What can help?",
      "options": [
        "Increase hidden layers",
        "Add more neurons",
        "Reduce learning rate or use optimizer with momentum",
        "Use ReLU instead of sigmoid"
      ],
      "correctAnswerIndex": 2,
      "explanation": "A high learning rate can cause oscillation. Reducing it or using momentum stabilizes updates."
    },
    {
      "id": 35,
      "questionText": "Scenario: Gradients are exploding in deep network. What is a solution?",
      "options": [
        "Gradient clipping",
        "Increase learning rate",
        "Reduce batch size",
        "Remove activation functions"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Gradient clipping limits gradient values to prevent large updates."
    },
    {
      "id": 36,
      "questionText": "Scenario: Training is slow and unstable. Which technique stabilizes and accelerates training?",
      "options": [
        "Reduce neurons",
        "Batch normalization",
        "L1 regularization",
        "Dropout"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Batch normalization normalizes layer inputs, stabilizing gradients and speeding up training."
    },
    {
      "id": 37,
      "questionText": "Scenario: Validation accuracy plateaus. Which learning rate strategy can help?",
      "options": [
        "Increase dropout",
        "Learning rate decay or scheduler",
        "Add more hidden layers",
        "Use sigmoid instead of ReLU"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Gradually decreasing learning rate can help the network converge to a better minimum."
    },
    {
      "id": 38,
      "questionText": "Scenario: You have imbalanced classes. Which approach helps classification?",
      "options": [
        "Use class weights or resampling",
        "Normalize features",
        "Increase hidden layers",
        "Use only majority class"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Class weights or resampling ensures minority classes are properly learned."
    },
    {
      "id": 39,
      "questionText": "Scenario: Input features have different scales. Which problem occurs if not normalized?",
      "options": [
        "Overfitting",
        "Output becomes zero",
        "Slower convergence or unstable training",
        "Activation function fails"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Feature scaling ensures weights update appropriately, avoiding slow or unstable convergence."
    },
    {
      "id": 40,
      "questionText": "Scenario: Using sigmoid activation in hidden layers of a deep network. Possible issue?",
      "options": [
        "Exploding gradients",
        "Underfitting",
        "Vanishing gradients",
        "Overfitting"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sigmoid outputs can cause very small gradients in deep networks, slowing learning."
    },
    {
      "id": 41,
      "questionText": "Scenario: Softmax output probabilities are all similar. What does this indicate?",
      "options": [
        "Perfect predictions",
        "Network is uncertain or not trained well",
        "Network output is binary",
        "Overfitting"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Similar probabilities indicate low confidence and that the network may require more training or features."
    },
    {
      "id": 42,
      "questionText": "Scenario: You want the network to ignore some neurons during training randomly. Technique?",
      "options": [
        "L2 regularization",
        "Dropout",
        "Gradient clipping",
        "Batch normalization"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Dropout randomly disables neurons to reduce co-adaptation and prevent overfitting."
    },
    {
      "id": 43,
      "questionText": "Scenario: Learning rate is too high and loss diverges. Immediate solution?",
      "options": [
        "Reduce learning rate",
        "Use sigmoid activation",
        "Increase neurons",
        "Add more layers"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High learning rates cause overshooting; lowering it stabilizes training."
    },
    {
      "id": 44,
      "questionText": "Scenario: You want to regularize large weights specifically. Technique?",
      "options": [
        "Gradient clipping",
        "Dropout",
        "L2 regularization",
        "Batch normalization"
      ],
      "correctAnswerIndex": 2,
      "explanation": "L2 penalizes large weights directly, helping prevent overfitting."
    },
    {
      "id": 45,
      "questionText": "Scenario: You want to create sparsity in connections (many weights zero). Technique?",
      "options": [
        "Dropout",
        "L2 regularization",
        "L1 regularization",
        "Batch normalization"
      ],
      "correctAnswerIndex": 2,
      "explanation": "L1 regularization encourages weights to become zero, creating sparsity."
    },
    {
      "id": 46,
      "questionText": "Scenario: Using ReLU activation, some neurons never activate. Problem name?",
      "options": [
        "Exploding gradient",
        "Vanishing gradient",
        "Overfitting",
        "Dead neurons"
      ],
      "correctAnswerIndex": 3,
      "explanation": "ReLU outputs zero for negative inputs; some neurons may stop activating permanently if gradients vanish."
    },
    {
      "id": 47,
      "questionText": "Scenario: You add batch normalization before activation. Effect?",
      "options": [
        "Removes gradient vanishing",
        "Reduces overfitting automatically",
        "Increases neurons",
        "Stabilizes inputs to activation function, improving training"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Batch normalization reduces internal covariate shift, helping gradients propagate effectively."
    },
    {
      "id": 48,
      "questionText": "Scenario: Network trained with mini-batches. What is benefit?",
      "options": [
        "Efficient computation and smoother gradient estimates",
        "No effect on convergence",
        "Exact gradient every step",
        "Removes overfitting"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Mini-batches balance efficiency and gradient stability."
    },
    {
      "id": 49,
      "questionText": "Scenario: Using Adam optimizer. Advantage over standard SGD?",
      "options": [
        "Requires less data",
        "Slower convergence",
        "Adaptive learning rates per parameter and momentum",
        "Removes activation function"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Adam combines momentum and adaptive learning rates for faster and more reliable convergence."
    },
    {
      "id": 50,
      "questionText": "Scenario: Network predictions are biased toward one class. Likely cause?",
      "options": [
        "Dead neurons",
        "Vanishing gradient",
        "Exploding gradient",
        "Class imbalance or inappropriate loss weighting"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Bias often occurs when some classes dominate training, requiring class weights or resampling."
    },
    {
      "id": 51,
      "questionText": "Scenario: High training accuracy, low validation accuracy. What does it indicate?",
      "options": [
        "Underfitting",
        "Overfitting",
        "Good generalization",
        "Vanishing gradient"
      ],
      "correctAnswerIndex": 1,
      "explanation": "The model fits training data well but fails to generalize to new data."
    },
    {
      "id": 52,
      "questionText": "Scenario: Network training is slow. You want faster convergence. Technique?",
      "options": [
        "Add more layers",
        "Reduce data",
        "Increase dropout",
        "Use momentum or adaptive optimizers"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Momentum and adaptive optimizers accelerate convergence by smoothing gradients."
    },
    {
      "id": 53,
      "questionText": "Scenario: Using softmax for 5-class classification. What constraint must output satisfy?",
      "options": [
        "All probabilities sum to 1",
        "All outputs zero or one",
        "Sum of squared outputs = 1",
        "All outputs positive integers"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Softmax converts logits to a probability distribution summing to 1."
    },
    {
      "id": 54,
      "questionText": "Scenario: Neural network with multiple hidden layers has slow learning. Likely cause?",
      "options": [
        "Vanishing gradients due to deep sigmoid/tanh activations",
        "Data imbalance",
        "Overfitting",
        "Softmax activation"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Deep sigmoid or tanh layers can shrink gradients, slowing learning."
    },
    {
      "id": 55,
      "questionText": "Scenario: You want output probabilities to reflect confidence. Which activation and loss?",
      "options": [
        "Sigmoid with MSE",
        "Softmax activation with cross-entropy loss",
        "Linear with MAE",
        "ReLU with hinge loss"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Softmax with cross-entropy outputs calibrated probabilities for multi-class classification."
    },
    {
      "id": 56,
      "questionText": "Scenario: Adding more neurons improved training but increased validation loss. Cause?",
      "options": [
        "Underfitting",
        "Learning rate too small",
        "Gradient vanishing",
        "Overfitting"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Increased model capacity fits training data but harms generalization."
    },
    {
      "id": 57,
      "questionText": "Scenario: Using ReLU activation, learning rate too high. Effect?",
      "options": [
        "Loss always decreases",
        "Some neurons may die permanently (dead neurons)",
        "Gradient vanishing occurs",
        "Training speeds up without issue"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High learning rates with ReLU can cause weights to push outputs negative permanently, killing neurons."
    },
    {
      "id": 58,
      "questionText": "Scenario: Batch normalization applied. Effect on learning rate?",
      "options": [
        "Requires lower learning rate",
        "Allows higher learning rates safely",
        "No effect",
        "Reduces learning rate automatically"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Normalization stabilizes training, allowing higher learning rates."
    },
    {
      "id": 59,
      "questionText": "Scenario: Neural network outputs are confident but incorrect. What to analyze?",
      "options": [
        "Learning rate only",
        "Activation function only",
        "Batch size only",
        "Data quality, feature engineering, and possible bias"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Errors often arise from biased data, missing features, or mislabeled samples."
    },
    {
      "id": 60,
      "questionText": "Scenario: Multi-class classification with one-hot labels. Loss function?",
      "options": [
        "Binary cross-entropy",
        "Hinge loss",
        "MSE",
        "Categorical cross-entropy"
      ],
      "correctAnswerIndex": 3,
      "explanation": "One-hot labels require categorical cross-entropy to measure prediction errors."
    },
    {
      "id": 61,
      "questionText": "Scenario: Training loss decreases slowly despite sufficient epochs. Possible cause?",
      "options": [
        "Batch size too large",
        "Dead neurons",
        "Overfitting",
        "Learning rate too small"
      ],
      "correctAnswerIndex": 3,
      "explanation": "A small learning rate results in slow convergence."
    },
    {
      "id": 62,
      "questionText": "Scenario: You want faster training on large datasets. Technique?",
      "options": [
        "Reduce layers",
        "Increase dropout",
        "Use mini-batches or GPUs",
        "Reduce neurons"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Mini-batches and hardware acceleration improve training speed."
    },
    {
      "id": 63,
      "questionText": "Scenario: You notice gradient oscillations in shallow network. Cause?",
      "options": [
        "Vanishing gradient",
        "High learning rate or noisy gradients",
        "Dead neurons",
        "Class imbalance"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High learning rates can cause unstable updates and oscillating loss."
    },
    {
      "id": 64,
      "questionText": "Scenario: Network uses tanh in hidden layers. Advantage over sigmoid?",
      "options": [
        "Faster computation",
        "Prevents overfitting",
        "Removes vanishing gradient completely",
        "Outputs zero-centered, improving gradient flow"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Tanh outputs in [-1,1], helping gradients propagate better than sigmoid."
    },
    {
      "id": 65,
      "questionText": "Scenario: Network trained with noisy labels. Solution?",
      "options": [
        "Add more layers",
        "Use ReLU",
        "Increase regularization and possibly label smoothing",
        "Reduce learning rate only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Regularization and label smoothing help mitigate noise impact."
    },
    {
      "id": 66,
      "questionText": "Scenario: You want to prevent overfitting but maintain capacity. Technique?",
      "options": [
        "Reduce neurons",
        "Increase batch size only",
        "Reduce layers",
        "Dropout or L2 regularization"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Dropout and weight decay help generalize without reducing model capacity."
    },
    {
      "id": 67,
      "questionText": "Scenario: Softmax probabilities are consistently close to 0.5 in binary classification. Cause?",
      "options": [
        "Overfitting",
        "Batch normalization failure",
        "Network not trained sufficiently or poor initialization",
        "Gradient explosion"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Poor training or initialization leads to low-confidence predictions."
    },
    {
      "id": 68,
      "questionText": "Scenario: You want to accelerate convergence using previous gradients. Technique?",
      "options": [
        "Gradient clipping",
        "Dropout",
        "Momentum",
        "Batch normalization"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Momentum uses past gradients to accelerate convergence and smooth updates."
    },
    {
      "id": 69,
      "questionText": "Scenario: Using SGD with mini-batches. Effect on gradient estimate?",
      "options": [
        "Always smaller than full gradient",
        "Always larger than full gradient",
        "Provides noisy but unbiased estimate of true gradient",
        "Exact gradient"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Mini-batches give noisy gradient approximations, which help generalization."
    },
    {
      "id": 70,
      "questionText": "Scenario: You observe network saturates at high loss. Likely cause?",
      "options": [
        "Activation functions causing vanishing gradients",
        "Softmax outputs",
        "Learning rate too small",
        "Too many neurons"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Saturation occurs when sigmoid/tanh outputs flatten, reducing gradient and slowing learning."
    },
    {
      "id": 71,
      "questionText": "Scenario: You are classifying high-resolution images with a fully connected network and poor performance. Likely solution?",
      "options": [
        "Switch to ReLU",
        "Increase hidden layers in fully connected network",
        "Reduce training data",
        "Use Convolutional Neural Networks (CNNs)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "CNNs leverage spatial information and reduce parameters for image classification, unlike dense networks."
    },
    {
      "id": 72,
      "questionText": "Scenario: Classifying sequences of text. Which network type is most suitable?",
      "options": [
        "Fully connected network",
        "Recurrent Neural Networks (RNNs) or LSTMs",
        "CNNs only",
        "Autoencoders"
      ],
      "correctAnswerIndex": 1,
      "explanation": "RNNs and LSTMs handle sequential dependencies effectively in text or time-series data."
    },
    {
      "id": 73,
      "questionText": "Scenario: Imbalanced multi-class classification. Which strategy is appropriate?",
      "options": [
        "Increase learning rate",
        "Use batch normalization only",
        "Reduce hidden layers",
        "Use class weighting, oversampling minority classes, or focal loss"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Techniques like class weighting or focal loss mitigate the impact of imbalanced data on training."
    },
    {
      "id": 74,
      "questionText": "Scenario: Network predicts very high confidence for wrong predictions. Which technique can help?",
      "options": [
        "Add more neurons",
        "Remove batch normalization",
        "Increase learning rate",
        "Label smoothing"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Label smoothing reduces overconfidence by softening target labels during training."
    },
    {
      "id": 75,
      "questionText": "Scenario: You want to interpret which features most influence network predictions. Technique?",
      "options": [
        "Apply dropout",
        "Use SHAP or LIME for interpretability",
        "Reduce batch size",
        "Increase hidden layers"
      ],
      "correctAnswerIndex": 1,
      "explanation": "SHAP and LIME provide insights into feature importance for neural network predictions."
    },
    {
      "id": 76,
      "questionText": "Scenario: Training a deep CNN suffers from vanishing gradients. Solution?",
      "options": [
        "Increase dropout",
        "Reduce dataset size",
        "Use residual connections (ResNet) or batch normalization",
        "Use softmax in hidden layers"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Residual connections allow gradients to bypass layers, mitigating vanishing gradient problems."
    },
    {
      "id": 77,
      "questionText": "Scenario: Multi-class classification with overlapping classes. Which metric is most informative?",
      "options": [
        "Accuracy only",
        "Binary cross-entropy",
        "F1-score per class",
        "Mean squared error"
      ],
      "correctAnswerIndex": 2,
      "explanation": "F1-score balances precision and recall, providing better insight for overlapping classes."
    },
    {
      "id": 78,
      "questionText": "Scenario: Network shows high variance across validation folds. Likely cause?",
      "options": [
        "Learning rate too small",
        "Vanishing gradients",
        "Dead neurons",
        "Overfitting or insufficient regularization"
      ],
      "correctAnswerIndex": 3,
      "explanation": "High variance indicates the model fits some folds well but fails on others due to overfitting."
    },
    {
      "id": 79,
      "questionText": "Scenario: Using CNN for images, which technique reduces overfitting?",
      "options": [
        "Increase batch size only",
        "Use sigmoid activation",
        "Reduce learning rate only",
        "Data augmentation"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Data augmentation increases dataset diversity, reducing overfitting on limited training data."
    },
    {
      "id": 80,
      "questionText": "Scenario: Network outputs are consistently wrong for a particular class. Cause?",
      "options": [
        "Class is underrepresented or features insufficient",
        "Learning rate too high",
        "Batch normalization issue",
        "Dropout too low"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Insufficient representation or feature information for a class leads to poor predictions."
    },
    {
      "id": 81,
      "questionText": "Scenario: You want to reduce computation in CNN while maintaining accuracy. Technique?",
      "options": [
        "Use depthwise separable convolutions or pruning",
        "Increase fully connected layers",
        "Use sigmoid activation",
        "Reduce batch size"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Depthwise separable convolutions and pruning reduce computation while retaining accuracy."
    },
    {
      "id": 82,
      "questionText": "Scenario: Using RNN, you observe long-term dependencies are not learned. Solution?",
      "options": [
        "Use LSTM or GRU instead of vanilla RNN",
        "Increase hidden layers only",
        "Use ReLU activation in RNN",
        "Reduce batch size"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LSTM and GRU have memory gates to capture long-term dependencies effectively."
    },
    {
      "id": 83,
      "questionText": "Scenario: Multi-label classification. Which activation in output layer?",
      "options": [
        "Softmax",
        "ReLU",
        "Sigmoid per output neuron",
        "Tanh"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sigmoid allows each output to be independent for multi-label classification."
    },
    {
      "id": 84,
      "questionText": "Scenario: Multi-label classification. Appropriate loss function?",
      "options": [
        "Categorical cross-entropy",
        "Hinge loss",
        "Binary cross-entropy",
        "Mean squared error"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Binary cross-entropy evaluates each output independently in multi-label tasks."
    },
    {
      "id": 85,
      "questionText": "Scenario: Neural network trained on small dataset with overfitting. Best strategy?",
      "options": [
        "Increase hidden layers",
        "Reduce learning rate only",
        "Use sigmoid activation only",
        "Data augmentation and regularization"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Augmenting data and regularization improves generalization on small datasets."
    },
    {
      "id": 86,
      "questionText": "Scenario: Classifier misclassifies rare but critical cases. Metric to focus on?",
      "options": [
        "Accuracy",
        "Loss function only",
        "Batch size",
        "Recall or F2-score for minority class"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Recall emphasizes capturing minority class correctly, important in critical cases."
    },
    {
      "id": 87,
      "questionText": "Scenario: Gradients vanish in deep LSTM. Likely cause?",
      "options": [
        "Dropout too low",
        "Overfitting",
        "Batch normalization",
        "Improper initialization or too deep layers"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Deep networks may still suffer vanishing gradients if weights are poorly initialized."
    },
    {
      "id": 88,
      "questionText": "Scenario: You want explainability for image classification. Technique?",
      "options": [
        "Reduce layers",
        "Use softmax only",
        "Increase dropout",
        "Use Grad-CAM or saliency maps"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Grad-CAM highlights important regions influencing CNN predictions."
    },
    {
      "id": 89,
      "questionText": "Scenario: Network converges to poor local minimum. Strategy?",
      "options": [
        "Increase dropout only",
        "Use different initialization, optimizers, or learning rate schedules",
        "Remove batch normalization",
        "Reduce neurons"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Initialization and optimizer strategies help escape poor local minima."
    },
    {
      "id": 90,
      "questionText": "Scenario: Network trained with adversarial examples. Purpose?",
      "options": [
        "Increase hidden layers",
        "Reduce learning rate",
        "Reduce overfitting",
        "Improve robustness against input perturbations"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Adversarial training prepares the network to handle small input perturbations safely."
    },
    {
      "id": 91,
      "questionText": "Scenario: CNN with skip connections. Advantage?",
      "options": [
        "Reduces dataset size",
        "Mitigates vanishing gradient and allows deeper networks",
        "Removes need for activation",
        "Reduces neurons only"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Skip connections in ResNet allow gradients to bypass layers, improving deep network training."
    },
    {
      "id": 92,
      "questionText": "Scenario: Multi-class classification with imbalanced data. Strategy to monitor?",
      "options": [
        "Loss function only",
        "Use per-class precision, recall, and F1-score",
        "Accuracy only",
        "Batch size only"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Per-class metrics reveal model performance for minority classes better than overall accuracy."
    },
    {
      "id": 93,
      "questionText": "Scenario: You want to deploy a network efficiently on edge devices. Strategy?",
      "options": [
        "Use deep fully connected layers",
        "Increase neurons",
        "Model compression, pruning, quantization",
        "Increase batch size"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Compression techniques reduce memory and compute requirements for deployment."
    },
    {
      "id": 94,
      "questionText": "Scenario: CNN predictions degrade on slightly shifted images. Technique?",
      "options": [
        "Use sigmoid instead of ReLU",
        "Reduce neurons",
        "Data augmentation with shifts or spatial transformers",
        "Increase hidden layers"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Data augmentation improves generalization to variations not seen in training."
    },
    {
      "id": 95,
      "questionText": "Scenario: Multi-class classification with label noise. Robust approach?",
      "options": [
        "Increase learning rate",
        "Add more layers",
        "Reduce batch size",
        "Use label smoothing or robust loss functions"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Label smoothing and robust losses mitigate the impact of incorrect labels."
    },
    {
      "id": 96,
      "questionText": "Scenario: Recurrent network fails on long sequences. Alternative?",
      "options": [
        "Use dropout only",
        "Use Transformer-based architectures",
        "Increase hidden units in RNN",
        "Increase batch size"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Transformers handle long-range dependencies better than RNNs/LSTMs."
    },
    {
      "id": 97,
      "questionText": "Scenario: Neural network trained with batch size 1. Issue?",
      "options": [
        "No effect",
        "Overfitting automatically",
        "Noisy gradient updates and slower convergence",
        "Dead neurons"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Batch size 1 (stochastic) leads to noisy gradients and unstable training."
    },
    {
      "id": 98,
      "questionText": "Scenario: Outputs are probabilities but poorly calibrated. Technique?",
      "options": [
        "Increase learning rate",
        "Reduce layers",
        "Use temperature scaling or calibration methods",
        "Increase neurons"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Calibration methods adjust predicted probabilities to better reflect true likelihoods."
    },
    {
      "id": 99,
      "questionText": "Scenario: Multi-class network with many small classes. Strategy?",
      "options": [
        "Reduce learning rate",
        "Use standard cross-entropy only",
        "Use ReLU in output layer",
        "Oversample small classes or use focal loss"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Oversampling or focal loss emphasizes minority classes during training."
    },
    {
      "id": 100,
      "questionText": "Scenario: Network deployed in real-time system misclassifies rare events. Approach?",
      "options": [
        "Retrain with targeted sampling or weighted loss for rare events",
        "Use smaller network",
        "Increase learning rate only",
        "Reduce batch size"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Targeted retraining or weighted loss ensures rare but critical events are correctly learned."
    }
  ]
}