Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,78 +1,105 @@
|
|
| 1 |
import os
|
| 2 |
from threading import Thread
|
| 3 |
-
from typing import Iterator
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
-
import spaces
|
| 7 |
import torch
|
| 8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 9 |
|
|
|
|
| 10 |
MAX_MAX_NEW_TOKENS = 2048
|
| 11 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 12 |
-
|
| 13 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 14 |
|
| 15 |
DESCRIPTION = """\
|
| 16 |
# DeepCode-6.7B-Chat
|
| 17 |
-
|
| 18 |
-
|
| 19 |
"""
|
| 20 |
|
| 21 |
if not torch.cuda.is_available():
|
| 22 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
if torch.cuda.is_available():
|
| 26 |
model_id = "deepcode-ai/deepcode-ai-6.7b-instruct"
|
| 27 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
| 28 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 29 |
tokenizer.use_default_system_prompt = False
|
| 30 |
-
|
| 31 |
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def generate(
|
| 35 |
message: str,
|
| 36 |
-
chat_history:
|
| 37 |
system_prompt: str,
|
| 38 |
-
max_new_tokens: int =
|
| 39 |
temperature: float = 0.6,
|
| 40 |
top_p: float = 0.9,
|
| 41 |
top_k: int = 50,
|
| 42 |
-
repetition_penalty: float = 1,
|
| 43 |
) -> Iterator[str]:
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
for user, assistant in chat_history:
|
| 48 |
-
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
| 49 |
-
conversation.append({"role": "user", "content": message})
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
input_ids = input_ids.to(model.device)
|
| 56 |
|
| 57 |
-
streamer = TextIteratorStreamer(
|
|
|
|
|
|
|
| 58 |
generate_kwargs = dict(
|
| 59 |
-
|
| 60 |
streamer=streamer,
|
| 61 |
max_new_tokens=max_new_tokens,
|
| 62 |
do_sample=False,
|
| 63 |
num_beams=1,
|
| 64 |
repetition_penalty=repetition_penalty,
|
| 65 |
-
eos_token_id=tokenizer.eos_token_id
|
| 66 |
)
|
| 67 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 68 |
t.start()
|
| 69 |
|
| 70 |
outputs = []
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
|
|
|
|
| 76 |
chat_interface = gr.ChatInterface(
|
| 77 |
fn=generate,
|
| 78 |
additional_inputs=[
|
|
@@ -84,13 +111,6 @@ chat_interface = gr.ChatInterface(
|
|
| 84 |
step=1,
|
| 85 |
value=DEFAULT_MAX_NEW_TOKENS,
|
| 86 |
),
|
| 87 |
-
# gr.Slider(
|
| 88 |
-
# label="Temperature",
|
| 89 |
-
# minimum=0,
|
| 90 |
-
# maximum=4.0,
|
| 91 |
-
# step=0.1,
|
| 92 |
-
# value=0,
|
| 93 |
-
# ),
|
| 94 |
gr.Slider(
|
| 95 |
label="Top-p (nucleus sampling)",
|
| 96 |
minimum=0.05,
|
|
@@ -110,14 +130,13 @@ chat_interface = gr.ChatInterface(
|
|
| 110 |
minimum=1.0,
|
| 111 |
maximum=2.0,
|
| 112 |
step=0.05,
|
| 113 |
-
value=1,
|
| 114 |
),
|
| 115 |
],
|
| 116 |
-
stop_btn=None,
|
| 117 |
examples=[
|
| 118 |
-
["
|
| 119 |
-
["Can you explain
|
| 120 |
-
["
|
| 121 |
],
|
| 122 |
)
|
| 123 |
|
|
|
|
| 1 |
import os
|
| 2 |
from threading import Thread
|
| 3 |
+
from typing import Iterator, List, Tuple
|
| 4 |
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
import torch
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 8 |
|
| 9 |
+
# Constants
|
| 10 |
MAX_MAX_NEW_TOKENS = 2048
|
| 11 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
|
|
|
| 12 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 13 |
|
| 14 |
DESCRIPTION = """\
|
| 15 |
# DeepCode-6.7B-Chat
|
| 16 |
+
This Space demonstrates model [DeepCode-AI](https://huggingface.co/deepcode-ai/deepcode-ai-6.7b-instruct)
|
| 17 |
+
by DeepCode, a code model with 6.7B parameters fine-tuned for chat instructions.
|
| 18 |
"""
|
| 19 |
|
| 20 |
if not torch.cuda.is_available():
|
| 21 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 22 |
+
model = None
|
| 23 |
+
else:
|
|
|
|
| 24 |
model_id = "deepcode-ai/deepcode-ai-6.7b-instruct"
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
model_id, torch_dtype=torch.bfloat16, device_map="auto"
|
| 27 |
+
)
|
| 28 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 29 |
tokenizer.use_default_system_prompt = False
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
+
def trim_input_ids(input_ids: torch.Tensor) -> torch.Tensor:
|
| 33 |
+
"""
|
| 34 |
+
Trim input_ids to fit within the MAX_INPUT_TOKEN_LENGTH.
|
| 35 |
+
"""
|
| 36 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 37 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 38 |
+
gr.Warning(f"Trimmed input as it exceeded {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 39 |
+
return input_ids
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def build_conversation(message: str, chat_history: List[Tuple[str, str]], system_prompt: str) -> List[dict]:
|
| 43 |
+
"""
|
| 44 |
+
Build the conversation structure for the chat model.
|
| 45 |
+
"""
|
| 46 |
+
conversation = []
|
| 47 |
+
if system_prompt:
|
| 48 |
+
conversation.append({"role": "system", "content": system_prompt})
|
| 49 |
+
for user, assistant in chat_history:
|
| 50 |
+
conversation.extend([
|
| 51 |
+
{"role": "user", "content": user},
|
| 52 |
+
{"role": "assistant", "content": assistant}
|
| 53 |
+
])
|
| 54 |
+
conversation.append({"role": "user", "content": message})
|
| 55 |
+
return conversation
|
| 56 |
+
|
| 57 |
+
|
| 58 |
def generate(
|
| 59 |
message: str,
|
| 60 |
+
chat_history: List[Tuple[str, str]],
|
| 61 |
system_prompt: str,
|
| 62 |
+
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
|
| 63 |
temperature: float = 0.6,
|
| 64 |
top_p: float = 0.9,
|
| 65 |
top_k: int = 50,
|
| 66 |
+
repetition_penalty: float = 1.0,
|
| 67 |
) -> Iterator[str]:
|
| 68 |
+
if model is None:
|
| 69 |
+
yield "GPU is unavailable. This demo does not run on CPU."
|
| 70 |
+
return
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
conversation = build_conversation(message, chat_history, system_prompt)
|
| 73 |
+
input_ids = tokenizer.apply_chat_template(
|
| 74 |
+
conversation, return_tensors="pt", add_generation_prompt=True
|
| 75 |
+
)
|
| 76 |
+
input_ids = trim_input_ids(input_ids.to(model.device))
|
| 77 |
|
| 78 |
+
streamer = TextIteratorStreamer(
|
| 79 |
+
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
| 80 |
+
)
|
| 81 |
generate_kwargs = dict(
|
| 82 |
+
input_ids=input_ids,
|
| 83 |
streamer=streamer,
|
| 84 |
max_new_tokens=max_new_tokens,
|
| 85 |
do_sample=False,
|
| 86 |
num_beams=1,
|
| 87 |
repetition_penalty=repetition_penalty,
|
| 88 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 89 |
)
|
| 90 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 91 |
t.start()
|
| 92 |
|
| 93 |
outputs = []
|
| 94 |
+
try:
|
| 95 |
+
for text in streamer:
|
| 96 |
+
outputs.append(text)
|
| 97 |
+
yield "".join(outputs).replace("<|EOT|>", "")
|
| 98 |
+
except Exception as e:
|
| 99 |
+
yield f"Error during generation: {e}"
|
| 100 |
|
| 101 |
|
| 102 |
+
# Gradio Interface
|
| 103 |
chat_interface = gr.ChatInterface(
|
| 104 |
fn=generate,
|
| 105 |
additional_inputs=[
|
|
|
|
| 111 |
step=1,
|
| 112 |
value=DEFAULT_MAX_NEW_TOKENS,
|
| 113 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
gr.Slider(
|
| 115 |
label="Top-p (nucleus sampling)",
|
| 116 |
minimum=0.05,
|
|
|
|
| 130 |
minimum=1.0,
|
| 131 |
maximum=2.0,
|
| 132 |
step=0.05,
|
| 133 |
+
value=1.0,
|
| 134 |
),
|
| 135 |
],
|
|
|
|
| 136 |
examples=[
|
| 137 |
+
["Implement snake game using pygame"],
|
| 138 |
+
["Can you explain what the Python programming language is?"],
|
| 139 |
+
["Write a program to find the factorial of a number"],
|
| 140 |
],
|
| 141 |
)
|
| 142 |
|