Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,106 Bytes
4845d25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
# -----------------------------------------------------------------------------
# Activation functions
# -----------------------------------------------------------------------------
def activate_head_gs(out, activation="norm_exp", conf_activation="expp1", conf_dim=None):
"""
Process network output to extract GS params and density values.
Density could be view-dependent as SH coefficient
Args:
out: Network output tensor (B, C, H, W)
activation: Activation type for 3D points
conf_activation: Activation type for confidence values
Returns:
Tuple of (3D points tensor, confidence tensor)
"""
# Move channels from last dim to the 4th dimension => (B, H, W, C)
fmap = out.permute(0, 2, 3, 1) # B,H,W,C expected
# Split into xyz (first C-1 channels) and confidence (last channel)
conf_dim = 1 if conf_dim is None else conf_dim
xyz = fmap[:, :, :, :-conf_dim]
conf = fmap[:, :, :, -1] if conf_dim == 1 else fmap[:, :, :, -conf_dim:]
if activation == "norm_exp":
d = xyz.norm(dim=-1, keepdim=True).clamp(min=1e-8)
xyz_normed = xyz / d
pts3d = xyz_normed * torch.expm1(d)
elif activation == "norm":
pts3d = xyz / xyz.norm(dim=-1, keepdim=True)
elif activation == "exp":
pts3d = torch.exp(xyz)
elif activation == "relu":
pts3d = F.relu(xyz)
elif activation == "sigmoid":
pts3d = torch.sigmoid(xyz)
elif activation == "linear":
pts3d = xyz
else:
raise ValueError(f"Unknown activation: {activation}")
if conf_activation == "expp1":
conf_out = 1 + conf.exp()
elif conf_activation == "expp0":
conf_out = conf.exp()
elif conf_activation == "sigmoid":
conf_out = torch.sigmoid(conf)
elif conf_activation == "linear":
conf_out = conf
else:
raise ValueError(f"Unknown conf_activation: {conf_activation}")
return pts3d, conf_out
# -----------------------------------------------------------------------------
# Other utilities
# -----------------------------------------------------------------------------
class Permute(nn.Module):
"""nn.Module wrapper around Tensor.permute for cleaner nn.Sequential usage."""
dims: Tuple[int, ...]
def __init__(self, dims: Tuple[int, ...]) -> None:
super().__init__()
self.dims = dims
def forward(self, x: torch.Tensor) -> torch.Tensor: # type: ignore[override]
return x.permute(*self.dims)
def position_grid_to_embed(
pos_grid: torch.Tensor, embed_dim: int, omega_0: float = 100
) -> torch.Tensor:
"""
Convert 2D position grid (HxWx2) to sinusoidal embeddings (HxWxC)
Args:
pos_grid: Tensor of shape (H, W, 2) containing 2D coordinates
embed_dim: Output channel dimension for embeddings
Returns:
Tensor of shape (H, W, embed_dim) with positional embeddings
"""
H, W, grid_dim = pos_grid.shape
assert grid_dim == 2
pos_flat = pos_grid.reshape(-1, grid_dim) # Flatten to (H*W, 2)
# Process x and y coordinates separately
emb_x = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 0], omega_0=omega_0) # [1, H*W, D/2]
emb_y = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 1], omega_0=omega_0) # [1, H*W, D/2]
# Combine and reshape
emb = torch.cat([emb_x, emb_y], dim=-1) # [1, H*W, D]
return emb.view(H, W, embed_dim) # [H, W, D]
def make_sincos_pos_embed(embed_dim: int, pos: torch.Tensor, omega_0: float = 100) -> torch.Tensor:
"""
This function generates a 1D positional embedding from a given grid using sine and cosine functions. # noqa
Args:
- embed_dim: The embedding dimension.
- pos: The position to generate the embedding from.
Returns:
- emb: The generated 1D positional embedding.
"""
assert embed_dim % 2 == 0
omega = torch.arange(embed_dim // 2, dtype=torch.double, device=pos.device)
omega /= embed_dim / 2.0
omega = 1.0 / omega_0**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = torch.sin(out) # (M, D/2)
emb_cos = torch.cos(out) # (M, D/2)
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
return emb.float()
# Inspired by https://github.com/microsoft/moge
def create_uv_grid(
width: int,
height: int,
aspect_ratio: float = None,
dtype: torch.dtype = None,
device: torch.device = None,
) -> torch.Tensor:
"""
Create a normalized UV grid of shape (width, height, 2).
The grid spans horizontally and vertically according to an aspect ratio,
ensuring the top-left corner is at (-x_span, -y_span) and the bottom-right
corner is at (x_span, y_span), normalized by the diagonal of the plane.
Args:
width (int): Number of points horizontally.
height (int): Number of points vertically.
aspect_ratio (float, optional): Width-to-height ratio. Defaults to width/height.
dtype (torch.dtype, optional): Data type of the resulting tensor.
device (torch.device, optional): Device on which the tensor is created.
Returns:
torch.Tensor: A (width, height, 2) tensor of UV coordinates.
"""
# Derive aspect ratio if not explicitly provided
if aspect_ratio is None:
aspect_ratio = float(width) / float(height)
# Compute normalized spans for X and Y
diag_factor = (aspect_ratio**2 + 1.0) ** 0.5
span_x = aspect_ratio / diag_factor
span_y = 1.0 / diag_factor
# Establish the linspace boundaries
left_x = -span_x * (width - 1) / width
right_x = span_x * (width - 1) / width
top_y = -span_y * (height - 1) / height
bottom_y = span_y * (height - 1) / height
# Generate 1D coordinates
x_coords = torch.linspace(left_x, right_x, steps=width, dtype=dtype, device=device)
y_coords = torch.linspace(top_y, bottom_y, steps=height, dtype=dtype, device=device)
# Create 2D meshgrid (width x height) and stack into UV
uu, vv = torch.meshgrid(x_coords, y_coords, indexing="xy")
uv_grid = torch.stack((uu, vv), dim=-1)
return uv_grid
# -----------------------------------------------------------------------------
# Interpolation (safe interpolation, avoid INT_MAX overflow)
# -----------------------------------------------------------------------------
def custom_interpolate(
x: torch.Tensor,
size: Union[Tuple[int, int], None] = None,
scale_factor: Union[float, None] = None,
mode: str = "bilinear",
align_corners: bool = True,
) -> torch.Tensor:
"""
Safe interpolation implementation to avoid INT_MAX overflow in torch.nn.functional.interpolate.
"""
if size is None:
assert scale_factor is not None, "Either size or scale_factor must be provided."
size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor))
INT_MAX = 1610612736
total = size[0] * size[1] * x.shape[0] * x.shape[1]
if total > INT_MAX:
chunks = torch.chunk(x, chunks=(total // INT_MAX) + 1, dim=0)
outs = [
nn.functional.interpolate(c, size=size, mode=mode, align_corners=align_corners)
for c in chunks
]
return torch.cat(outs, dim=0).contiguous()
return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners)
|