File size: 8,106 Bytes
4845d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F

# -----------------------------------------------------------------------------
# Activation functions
# -----------------------------------------------------------------------------


def activate_head_gs(out, activation="norm_exp", conf_activation="expp1", conf_dim=None):
    """
    Process network output to extract GS params and density values.
    Density could be view-dependent as SH coefficient


    Args:
        out: Network output tensor (B, C, H, W)
        activation: Activation type for 3D points
        conf_activation: Activation type for confidence values

    Returns:
        Tuple of (3D points tensor, confidence tensor)
    """
    # Move channels from last dim to the 4th dimension => (B, H, W, C)
    fmap = out.permute(0, 2, 3, 1)  # B,H,W,C expected

    # Split into xyz (first C-1 channels) and confidence (last channel)
    conf_dim = 1 if conf_dim is None else conf_dim
    xyz = fmap[:, :, :, :-conf_dim]
    conf = fmap[:, :, :, -1] if conf_dim == 1 else fmap[:, :, :, -conf_dim:]

    if activation == "norm_exp":
        d = xyz.norm(dim=-1, keepdim=True).clamp(min=1e-8)
        xyz_normed = xyz / d
        pts3d = xyz_normed * torch.expm1(d)
    elif activation == "norm":
        pts3d = xyz / xyz.norm(dim=-1, keepdim=True)
    elif activation == "exp":
        pts3d = torch.exp(xyz)
    elif activation == "relu":
        pts3d = F.relu(xyz)
    elif activation == "sigmoid":
        pts3d = torch.sigmoid(xyz)
    elif activation == "linear":
        pts3d = xyz
    else:
        raise ValueError(f"Unknown activation: {activation}")

    if conf_activation == "expp1":
        conf_out = 1 + conf.exp()
    elif conf_activation == "expp0":
        conf_out = conf.exp()
    elif conf_activation == "sigmoid":
        conf_out = torch.sigmoid(conf)
    elif conf_activation == "linear":
        conf_out = conf
    else:
        raise ValueError(f"Unknown conf_activation: {conf_activation}")

    return pts3d, conf_out


# -----------------------------------------------------------------------------
# Other utilities
# -----------------------------------------------------------------------------


class Permute(nn.Module):
    """nn.Module wrapper around Tensor.permute for cleaner nn.Sequential usage."""

    dims: Tuple[int, ...]

    def __init__(self, dims: Tuple[int, ...]) -> None:
        super().__init__()
        self.dims = dims

    def forward(self, x: torch.Tensor) -> torch.Tensor:  # type: ignore[override]
        return x.permute(*self.dims)


def position_grid_to_embed(
    pos_grid: torch.Tensor, embed_dim: int, omega_0: float = 100
) -> torch.Tensor:
    """
    Convert 2D position grid (HxWx2) to sinusoidal embeddings (HxWxC)

    Args:
        pos_grid: Tensor of shape (H, W, 2) containing 2D coordinates
        embed_dim: Output channel dimension for embeddings

    Returns:
        Tensor of shape (H, W, embed_dim) with positional embeddings
    """
    H, W, grid_dim = pos_grid.shape
    assert grid_dim == 2
    pos_flat = pos_grid.reshape(-1, grid_dim)  # Flatten to (H*W, 2)

    # Process x and y coordinates separately
    emb_x = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 0], omega_0=omega_0)  # [1, H*W, D/2]
    emb_y = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 1], omega_0=omega_0)  # [1, H*W, D/2]

    # Combine and reshape
    emb = torch.cat([emb_x, emb_y], dim=-1)  # [1, H*W, D]

    return emb.view(H, W, embed_dim)  # [H, W, D]


def make_sincos_pos_embed(embed_dim: int, pos: torch.Tensor, omega_0: float = 100) -> torch.Tensor:
    """
    This function generates a 1D positional embedding from a given grid using sine and cosine functions. # noqa

    Args:
    - embed_dim: The embedding dimension.
    - pos: The position to generate the embedding from.

    Returns:
    - emb: The generated 1D positional embedding.
    """
    assert embed_dim % 2 == 0
    omega = torch.arange(embed_dim // 2, dtype=torch.double, device=pos.device)
    omega /= embed_dim / 2.0
    omega = 1.0 / omega_0**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = torch.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = torch.sin(out)  # (M, D/2)
    emb_cos = torch.cos(out)  # (M, D/2)

    emb = torch.cat([emb_sin, emb_cos], dim=1)  # (M, D)
    return emb.float()


# Inspired by https://github.com/microsoft/moge


def create_uv_grid(
    width: int,
    height: int,
    aspect_ratio: float = None,
    dtype: torch.dtype = None,
    device: torch.device = None,
) -> torch.Tensor:
    """
    Create a normalized UV grid of shape (width, height, 2).

    The grid spans horizontally and vertically according to an aspect ratio,
    ensuring the top-left corner is at (-x_span, -y_span) and the bottom-right
    corner is at (x_span, y_span), normalized by the diagonal of the plane.

    Args:
        width (int): Number of points horizontally.
        height (int): Number of points vertically.
        aspect_ratio (float, optional): Width-to-height ratio. Defaults to width/height.
        dtype (torch.dtype, optional): Data type of the resulting tensor.
        device (torch.device, optional): Device on which the tensor is created.

    Returns:
        torch.Tensor: A (width, height, 2) tensor of UV coordinates.
    """
    # Derive aspect ratio if not explicitly provided
    if aspect_ratio is None:
        aspect_ratio = float(width) / float(height)

    # Compute normalized spans for X and Y
    diag_factor = (aspect_ratio**2 + 1.0) ** 0.5
    span_x = aspect_ratio / diag_factor
    span_y = 1.0 / diag_factor

    # Establish the linspace boundaries
    left_x = -span_x * (width - 1) / width
    right_x = span_x * (width - 1) / width
    top_y = -span_y * (height - 1) / height
    bottom_y = span_y * (height - 1) / height

    # Generate 1D coordinates
    x_coords = torch.linspace(left_x, right_x, steps=width, dtype=dtype, device=device)
    y_coords = torch.linspace(top_y, bottom_y, steps=height, dtype=dtype, device=device)

    # Create 2D meshgrid (width x height) and stack into UV
    uu, vv = torch.meshgrid(x_coords, y_coords, indexing="xy")
    uv_grid = torch.stack((uu, vv), dim=-1)

    return uv_grid


# -----------------------------------------------------------------------------
# Interpolation (safe interpolation, avoid INT_MAX overflow)
# -----------------------------------------------------------------------------
def custom_interpolate(
    x: torch.Tensor,
    size: Union[Tuple[int, int], None] = None,
    scale_factor: Union[float, None] = None,
    mode: str = "bilinear",
    align_corners: bool = True,
) -> torch.Tensor:
    """
    Safe interpolation implementation to avoid INT_MAX overflow in torch.nn.functional.interpolate.
    """
    if size is None:
        assert scale_factor is not None, "Either size or scale_factor must be provided."
        size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor))

    INT_MAX = 1610612736
    total = size[0] * size[1] * x.shape[0] * x.shape[1]

    if total > INT_MAX:
        chunks = torch.chunk(x, chunks=(total // INT_MAX) + 1, dim=0)
        outs = [
            nn.functional.interpolate(c, size=size, mode=mode, align_corners=align_corners)
            for c in chunks
        ]
        return torch.cat(outs, dim=0).contiguous()

    return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners)