Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 ByteDance Ltd. and/or its affiliates | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from math import isqrt | |
| from typing import Literal, Optional | |
| import torch | |
| from einops import rearrange, repeat | |
| from tqdm import tqdm | |
| from depth_anything_3.specs import Gaussians | |
| from depth_anything_3.utils.camera_trj_helpers import ( | |
| interpolate_extrinsics, | |
| interpolate_intrinsics, | |
| render_dolly_zoom_path, | |
| render_stabilization_path, | |
| render_wander_path, | |
| render_wobble_inter_path, | |
| ) | |
| from depth_anything_3.utils.geometry import affine_inverse, as_homogeneous, get_fov | |
| from depth_anything_3.utils.logger import logger | |
| try: | |
| from gsplat import rasterization | |
| except ImportError: | |
| logger.warn( | |
| "Dependency `gsplat` is required for rendering 3DGS. " | |
| "Install via: pip install git+https://github.com/nerfstudio-project/" | |
| "gsplat.git@0b4dddf04cb687367602c01196913cde6a743d70" | |
| ) | |
| def render_3dgs( | |
| extrinsics: torch.Tensor, # "batch_views 4 4", w2c | |
| intrinsics: torch.Tensor, # "batch_views 3 3", normalized | |
| image_shape: tuple[int, int], | |
| gaussian: Gaussians, | |
| background_color: Optional[torch.Tensor] = None, # "batch_views 3" | |
| use_sh: bool = True, | |
| num_view: int = 1, | |
| color_mode: Literal["RGB+D", "RGB+ED"] = "RGB+D", | |
| **kwargs, | |
| ) -> tuple[ | |
| torch.Tensor, # "batch_views 3 height width" | |
| torch.Tensor, # "batch_views height width" | |
| ]: | |
| # extract gaussian params | |
| gaussian_means = gaussian.means | |
| gaussian_scales = gaussian.scales | |
| gaussian_quats = gaussian.rotations | |
| gaussian_opacities = gaussian.opacities | |
| gaussian_sh_coefficients = gaussian.harmonics | |
| b, _, _ = extrinsics.shape | |
| if background_color is None: | |
| background_color = repeat(torch.tensor([0.0, 0.0, 0.0]), "c -> b c", b=b).to( | |
| gaussian_sh_coefficients | |
| ) | |
| if use_sh: | |
| _, _, _, n = gaussian_sh_coefficients.shape | |
| degree = isqrt(n) - 1 | |
| shs = rearrange(gaussian_sh_coefficients, "b g xyz n -> b g n xyz").contiguous() | |
| else: # use color | |
| shs = ( | |
| gaussian_sh_coefficients.squeeze(-1).sigmoid().contiguous() | |
| ) # (b, g, c), normed to (0, 1) | |
| h, w = image_shape | |
| fov_x, fov_y = get_fov(intrinsics).unbind(dim=-1) | |
| tan_fov_x = (0.5 * fov_x).tan() | |
| tan_fov_y = (0.5 * fov_y).tan() | |
| focal_length_x = w / (2 * tan_fov_x) | |
| focal_length_y = h / (2 * tan_fov_y) | |
| view_matrix = extrinsics.float() | |
| all_images = [] | |
| all_radii = [] | |
| all_depths = [] | |
| # render view in a batch based, each batch contains one scene | |
| # assume the Gaussian parameters are originally repeated along the view dim | |
| batch_scene = b // num_view | |
| def index_i_gs_attr(full_attr, idx): | |
| # return rearrange(full_attr, "(b v) ... -> b v ...", v=num_view)[idx, 0] | |
| return full_attr[idx] | |
| for i in range(batch_scene): | |
| K = repeat( | |
| torch.tensor( | |
| [ | |
| [0, 0, w / 2.0], | |
| [0, 0, h / 2.0], | |
| [0, 0, 1], | |
| ] | |
| ), | |
| "i j -> v i j", | |
| v=num_view, | |
| ).to(gaussian_means) | |
| K[:, 0, 0] = focal_length_x.reshape(batch_scene, num_view)[i] | |
| K[:, 1, 1] = focal_length_y.reshape(batch_scene, num_view)[i] | |
| i_means = index_i_gs_attr(gaussian_means, i) # [N, 3] | |
| i_scales = index_i_gs_attr(gaussian_scales, i) | |
| i_quats = index_i_gs_attr(gaussian_quats, i) | |
| i_opacities = index_i_gs_attr(gaussian_opacities, i) # [N,] | |
| i_colors = index_i_gs_attr(shs, i) # [N, K, 3] | |
| i_viewmats = rearrange(view_matrix, "(b v) ... -> b v ...", v=num_view)[i] # [v, 4, 4] | |
| i_backgrounds = rearrange(background_color, "(b v) ... -> b v ...", v=num_view)[ | |
| i | |
| ] # [v, 3] | |
| render_colors, render_alphas, info = rasterization( | |
| means=i_means, | |
| quats=i_quats, # [N, 4] | |
| scales=i_scales, # [N, 3] | |
| opacities=i_opacities, | |
| colors=i_colors, | |
| viewmats=i_viewmats, # [v, 4, 4] | |
| Ks=K, # [v, 3, 3] | |
| backgrounds=i_backgrounds, | |
| render_mode=color_mode, | |
| width=w, | |
| height=h, | |
| packed=False, | |
| sh_degree=degree if use_sh else None, | |
| ) | |
| depth = render_colors[..., -1].unbind(dim=0) | |
| image = rearrange(render_colors[..., :3], "v h w c -> v c h w").unbind(dim=0) | |
| radii = info["radii"].unbind(dim=0) | |
| try: | |
| info["means2d"].retain_grad() # [1, N, 2] | |
| except Exception: | |
| pass | |
| all_images.extend(image) | |
| all_depths.extend(depth) | |
| all_radii.extend(radii) | |
| return torch.stack(all_images), torch.stack(all_depths) | |
| def run_renderer_in_chunk_w_trj_mode( | |
| gaussians: Gaussians, | |
| extrinsics: torch.Tensor, # world2cam, "batch view 4 4" | "batch view 3 4" | |
| intrinsics: torch.Tensor, # unnormed intrinsics, "batch view 3 3" | |
| image_shape: tuple[int, int], | |
| chunk_size: Optional[int] = 8, | |
| trj_mode: Literal[ | |
| "original", | |
| "smooth", | |
| "interpolate", | |
| "interpolate_smooth", | |
| "wander", | |
| "dolly_zoom", | |
| "extend", | |
| "wobble_inter", | |
| ] = "smooth", | |
| input_shape: Optional[tuple[int, int]] = None, | |
| enable_tqdm: Optional[bool] = False, | |
| **kwargs, | |
| ) -> tuple[ | |
| torch.Tensor, # color, "batch view 3 height width" | |
| torch.Tensor, # depth, "batch view height width" | |
| ]: | |
| cam2world = affine_inverse(as_homogeneous(extrinsics)) | |
| if input_shape is not None: | |
| in_h, in_w = input_shape | |
| else: | |
| in_h, in_w = image_shape | |
| intr_normed = intrinsics.clone().detach() | |
| intr_normed[..., 0, :] /= in_w | |
| intr_normed[..., 1, :] /= in_h | |
| if extrinsics.shape[1] <= 1: | |
| assert trj_mode in [ | |
| "wander", | |
| "dolly_zoom", | |
| ], "Please set trj_mode to 'wander' or 'dolly_zoom' when n_views=1" | |
| def _smooth_trj_fn_batch(raw_c2ws, k_size=50): | |
| try: | |
| smooth_c2ws = torch.stack( | |
| [render_stabilization_path(c2w_i, k_size) for c2w_i in raw_c2ws], | |
| dim=0, | |
| ) | |
| except Exception as e: | |
| print(f"[DEBUG] Path smoothing failed with error: {e}.") | |
| smooth_c2ws = raw_c2ws | |
| return smooth_c2ws | |
| # get rendered trj | |
| if trj_mode == "original": | |
| tgt_c2w = cam2world | |
| tgt_intr = intr_normed | |
| elif trj_mode == "smooth": | |
| tgt_c2w = _smooth_trj_fn_batch(cam2world) | |
| tgt_intr = intr_normed | |
| elif trj_mode in ["interpolate", "interpolate_smooth", "extend"]: | |
| inter_len = 8 | |
| total_len = (cam2world.shape[1] - 1) * inter_len | |
| if total_len > 24 * 18: # no more than 18s | |
| inter_len = max(1, 24 * 10 // (cam2world.shape[1] - 1)) | |
| if total_len < 24 * 2: # no less than 2s | |
| inter_len = max(1, 24 * 2 // (cam2world.shape[1] - 1)) | |
| if inter_len > 2: | |
| t = torch.linspace(0, 1, inter_len, dtype=torch.float32, device=cam2world.device) | |
| t = (torch.cos(torch.pi * (t + 1)) + 1) / 2 | |
| tgt_c2w_b = [] | |
| tgt_intr_b = [] | |
| for b_idx in range(cam2world.shape[0]): | |
| tgt_c2w = [] | |
| tgt_intr = [] | |
| for cur_idx in range(cam2world.shape[1] - 1): | |
| tgt_c2w.append( | |
| interpolate_extrinsics( | |
| cam2world[b_idx, cur_idx], cam2world[b_idx, cur_idx + 1], t | |
| )[(0 if cur_idx == 0 else 1) :] | |
| ) | |
| tgt_intr.append( | |
| interpolate_intrinsics( | |
| intr_normed[b_idx, cur_idx], intr_normed[b_idx, cur_idx + 1], t | |
| )[(0 if cur_idx == 0 else 1) :] | |
| ) | |
| tgt_c2w_b.append(torch.cat(tgt_c2w)) | |
| tgt_intr_b.append(torch.cat(tgt_intr)) | |
| tgt_c2w = torch.stack(tgt_c2w_b) # b v 4 4 | |
| tgt_intr = torch.stack(tgt_intr_b) # b v 3 3 | |
| else: | |
| tgt_c2w = cam2world | |
| tgt_intr = intr_normed | |
| if trj_mode in ["interpolate_smooth", "extend"]: | |
| tgt_c2w = _smooth_trj_fn_batch(tgt_c2w) | |
| if trj_mode == "extend": | |
| # apply dolly_zoom and wander in the middle frame | |
| assert cam2world.shape[0] == 1, "extend only supports for batch_size=1 currently." | |
| mid_idx = tgt_c2w.shape[1] // 2 | |
| c2w_wd, intr_wd = render_wander_path( | |
| tgt_c2w[0, mid_idx], | |
| tgt_intr[0, mid_idx], | |
| h=in_h, | |
| w=in_w, | |
| num_frames=max(36, min(60, mid_idx // 2)), | |
| max_disp=24.0, | |
| ) | |
| c2w_dz, intr_dz = render_dolly_zoom_path( | |
| tgt_c2w[0, mid_idx], | |
| tgt_intr[0, mid_idx], | |
| h=in_h, | |
| w=in_w, | |
| num_frames=max(36, min(60, mid_idx // 2)), | |
| ) | |
| tgt_c2w = torch.cat( | |
| [ | |
| tgt_c2w[:, :mid_idx], | |
| c2w_wd.unsqueeze(0), | |
| c2w_dz.unsqueeze(0), | |
| tgt_c2w[:, mid_idx:], | |
| ], | |
| dim=1, | |
| ) | |
| tgt_intr = torch.cat( | |
| [ | |
| tgt_intr[:, :mid_idx], | |
| intr_wd.unsqueeze(0), | |
| intr_dz.unsqueeze(0), | |
| tgt_intr[:, mid_idx:], | |
| ], | |
| dim=1, | |
| ) | |
| elif trj_mode in ["wander", "dolly_zoom"]: | |
| if trj_mode == "wander": | |
| render_fn = render_wander_path | |
| extra_kwargs = {"max_disp": 24.0} | |
| else: | |
| render_fn = render_dolly_zoom_path | |
| extra_kwargs = {"D_focus": 30.0, "max_disp": 2.0} | |
| tgt_c2w = [] | |
| tgt_intr = [] | |
| for b_idx in range(cam2world.shape[0]): | |
| c2w_i, intr_i = render_fn( | |
| cam2world[b_idx, 0], intr_normed[b_idx, 0], h=in_h, w=in_w, **extra_kwargs | |
| ) | |
| tgt_c2w.append(c2w_i) | |
| tgt_intr.append(intr_i) | |
| tgt_c2w = torch.stack(tgt_c2w) | |
| tgt_intr = torch.stack(tgt_intr) | |
| elif trj_mode == "wobble_inter": | |
| tgt_c2w, tgt_intr = render_wobble_inter_path( | |
| cam2world=cam2world, | |
| intr_normed=intr_normed, | |
| inter_len=10, | |
| n_skip=3, | |
| ) | |
| else: | |
| raise Exception(f"trj mode [{trj_mode}] is not implemented.") | |
| _, v = tgt_c2w.shape[:2] | |
| tgt_extr = affine_inverse(tgt_c2w) | |
| if chunk_size is None: | |
| chunk_size = v | |
| chunk_size = min(v, chunk_size) | |
| all_colors = [] | |
| all_depths = [] | |
| for chunk_idx in tqdm( | |
| range(math.ceil(v / chunk_size)), | |
| desc="Rendering novel views", | |
| disable=(not enable_tqdm), | |
| leave=False, | |
| ): | |
| s = int(chunk_idx * chunk_size) | |
| e = int((chunk_idx + 1) * chunk_size) | |
| cur_n_view = tgt_extr[:, s:e].shape[1] | |
| color, depth = render_3dgs( | |
| extrinsics=rearrange(tgt_extr[:, s:e], "b v ... -> (b v) ..."), # w2c | |
| intrinsics=rearrange(tgt_intr[:, s:e], "b v ... -> (b v) ..."), # normed | |
| image_shape=image_shape, | |
| gaussian=gaussians, | |
| num_view=cur_n_view, | |
| **kwargs, | |
| ) | |
| all_colors.append(rearrange(color, "(b v) ... -> b v ...", v=cur_n_view)) | |
| all_depths.append(rearrange(depth, "(b v) ... -> b v ...", v=cur_n_view)) | |
| all_colors = torch.cat(all_colors, dim=1) | |
| all_depths = torch.cat(all_depths, dim=1) | |
| return all_colors, all_depths | |