linhaotong
update
b9f87ab
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from math import isqrt
from typing import Literal, Optional
import torch
from einops import rearrange, repeat
from tqdm import tqdm
from depth_anything_3.specs import Gaussians
from depth_anything_3.utils.camera_trj_helpers import (
interpolate_extrinsics,
interpolate_intrinsics,
render_dolly_zoom_path,
render_stabilization_path,
render_wander_path,
render_wobble_inter_path,
)
from depth_anything_3.utils.geometry import affine_inverse, as_homogeneous, get_fov
from depth_anything_3.utils.logger import logger
try:
from gsplat import rasterization
except ImportError:
logger.warn(
"Dependency `gsplat` is required for rendering 3DGS. "
"Install via: pip install git+https://github.com/nerfstudio-project/"
"gsplat.git@0b4dddf04cb687367602c01196913cde6a743d70"
)
def render_3dgs(
extrinsics: torch.Tensor, # "batch_views 4 4", w2c
intrinsics: torch.Tensor, # "batch_views 3 3", normalized
image_shape: tuple[int, int],
gaussian: Gaussians,
background_color: Optional[torch.Tensor] = None, # "batch_views 3"
use_sh: bool = True,
num_view: int = 1,
color_mode: Literal["RGB+D", "RGB+ED"] = "RGB+D",
**kwargs,
) -> tuple[
torch.Tensor, # "batch_views 3 height width"
torch.Tensor, # "batch_views height width"
]:
# extract gaussian params
gaussian_means = gaussian.means
gaussian_scales = gaussian.scales
gaussian_quats = gaussian.rotations
gaussian_opacities = gaussian.opacities
gaussian_sh_coefficients = gaussian.harmonics
b, _, _ = extrinsics.shape
if background_color is None:
background_color = repeat(torch.tensor([0.0, 0.0, 0.0]), "c -> b c", b=b).to(
gaussian_sh_coefficients
)
if use_sh:
_, _, _, n = gaussian_sh_coefficients.shape
degree = isqrt(n) - 1
shs = rearrange(gaussian_sh_coefficients, "b g xyz n -> b g n xyz").contiguous()
else: # use color
shs = (
gaussian_sh_coefficients.squeeze(-1).sigmoid().contiguous()
) # (b, g, c), normed to (0, 1)
h, w = image_shape
fov_x, fov_y = get_fov(intrinsics).unbind(dim=-1)
tan_fov_x = (0.5 * fov_x).tan()
tan_fov_y = (0.5 * fov_y).tan()
focal_length_x = w / (2 * tan_fov_x)
focal_length_y = h / (2 * tan_fov_y)
view_matrix = extrinsics.float()
all_images = []
all_radii = []
all_depths = []
# render view in a batch based, each batch contains one scene
# assume the Gaussian parameters are originally repeated along the view dim
batch_scene = b // num_view
def index_i_gs_attr(full_attr, idx):
# return rearrange(full_attr, "(b v) ... -> b v ...", v=num_view)[idx, 0]
return full_attr[idx]
for i in range(batch_scene):
K = repeat(
torch.tensor(
[
[0, 0, w / 2.0],
[0, 0, h / 2.0],
[0, 0, 1],
]
),
"i j -> v i j",
v=num_view,
).to(gaussian_means)
K[:, 0, 0] = focal_length_x.reshape(batch_scene, num_view)[i]
K[:, 1, 1] = focal_length_y.reshape(batch_scene, num_view)[i]
i_means = index_i_gs_attr(gaussian_means, i) # [N, 3]
i_scales = index_i_gs_attr(gaussian_scales, i)
i_quats = index_i_gs_attr(gaussian_quats, i)
i_opacities = index_i_gs_attr(gaussian_opacities, i) # [N,]
i_colors = index_i_gs_attr(shs, i) # [N, K, 3]
i_viewmats = rearrange(view_matrix, "(b v) ... -> b v ...", v=num_view)[i] # [v, 4, 4]
i_backgrounds = rearrange(background_color, "(b v) ... -> b v ...", v=num_view)[
i
] # [v, 3]
render_colors, render_alphas, info = rasterization(
means=i_means,
quats=i_quats, # [N, 4]
scales=i_scales, # [N, 3]
opacities=i_opacities,
colors=i_colors,
viewmats=i_viewmats, # [v, 4, 4]
Ks=K, # [v, 3, 3]
backgrounds=i_backgrounds,
render_mode=color_mode,
width=w,
height=h,
packed=False,
sh_degree=degree if use_sh else None,
)
depth = render_colors[..., -1].unbind(dim=0)
image = rearrange(render_colors[..., :3], "v h w c -> v c h w").unbind(dim=0)
radii = info["radii"].unbind(dim=0)
try:
info["means2d"].retain_grad() # [1, N, 2]
except Exception:
pass
all_images.extend(image)
all_depths.extend(depth)
all_radii.extend(radii)
return torch.stack(all_images), torch.stack(all_depths)
def run_renderer_in_chunk_w_trj_mode(
gaussians: Gaussians,
extrinsics: torch.Tensor, # world2cam, "batch view 4 4" | "batch view 3 4"
intrinsics: torch.Tensor, # unnormed intrinsics, "batch view 3 3"
image_shape: tuple[int, int],
chunk_size: Optional[int] = 8,
trj_mode: Literal[
"original",
"smooth",
"interpolate",
"interpolate_smooth",
"wander",
"dolly_zoom",
"extend",
"wobble_inter",
] = "smooth",
input_shape: Optional[tuple[int, int]] = None,
enable_tqdm: Optional[bool] = False,
**kwargs,
) -> tuple[
torch.Tensor, # color, "batch view 3 height width"
torch.Tensor, # depth, "batch view height width"
]:
cam2world = affine_inverse(as_homogeneous(extrinsics))
if input_shape is not None:
in_h, in_w = input_shape
else:
in_h, in_w = image_shape
intr_normed = intrinsics.clone().detach()
intr_normed[..., 0, :] /= in_w
intr_normed[..., 1, :] /= in_h
if extrinsics.shape[1] <= 1:
assert trj_mode in [
"wander",
"dolly_zoom",
], "Please set trj_mode to 'wander' or 'dolly_zoom' when n_views=1"
def _smooth_trj_fn_batch(raw_c2ws, k_size=50):
try:
smooth_c2ws = torch.stack(
[render_stabilization_path(c2w_i, k_size) for c2w_i in raw_c2ws],
dim=0,
)
except Exception as e:
print(f"[DEBUG] Path smoothing failed with error: {e}.")
smooth_c2ws = raw_c2ws
return smooth_c2ws
# get rendered trj
if trj_mode == "original":
tgt_c2w = cam2world
tgt_intr = intr_normed
elif trj_mode == "smooth":
tgt_c2w = _smooth_trj_fn_batch(cam2world)
tgt_intr = intr_normed
elif trj_mode in ["interpolate", "interpolate_smooth", "extend"]:
inter_len = 8
total_len = (cam2world.shape[1] - 1) * inter_len
if total_len > 24 * 18: # no more than 18s
inter_len = max(1, 24 * 10 // (cam2world.shape[1] - 1))
if total_len < 24 * 2: # no less than 2s
inter_len = max(1, 24 * 2 // (cam2world.shape[1] - 1))
if inter_len > 2:
t = torch.linspace(0, 1, inter_len, dtype=torch.float32, device=cam2world.device)
t = (torch.cos(torch.pi * (t + 1)) + 1) / 2
tgt_c2w_b = []
tgt_intr_b = []
for b_idx in range(cam2world.shape[0]):
tgt_c2w = []
tgt_intr = []
for cur_idx in range(cam2world.shape[1] - 1):
tgt_c2w.append(
interpolate_extrinsics(
cam2world[b_idx, cur_idx], cam2world[b_idx, cur_idx + 1], t
)[(0 if cur_idx == 0 else 1) :]
)
tgt_intr.append(
interpolate_intrinsics(
intr_normed[b_idx, cur_idx], intr_normed[b_idx, cur_idx + 1], t
)[(0 if cur_idx == 0 else 1) :]
)
tgt_c2w_b.append(torch.cat(tgt_c2w))
tgt_intr_b.append(torch.cat(tgt_intr))
tgt_c2w = torch.stack(tgt_c2w_b) # b v 4 4
tgt_intr = torch.stack(tgt_intr_b) # b v 3 3
else:
tgt_c2w = cam2world
tgt_intr = intr_normed
if trj_mode in ["interpolate_smooth", "extend"]:
tgt_c2w = _smooth_trj_fn_batch(tgt_c2w)
if trj_mode == "extend":
# apply dolly_zoom and wander in the middle frame
assert cam2world.shape[0] == 1, "extend only supports for batch_size=1 currently."
mid_idx = tgt_c2w.shape[1] // 2
c2w_wd, intr_wd = render_wander_path(
tgt_c2w[0, mid_idx],
tgt_intr[0, mid_idx],
h=in_h,
w=in_w,
num_frames=max(36, min(60, mid_idx // 2)),
max_disp=24.0,
)
c2w_dz, intr_dz = render_dolly_zoom_path(
tgt_c2w[0, mid_idx],
tgt_intr[0, mid_idx],
h=in_h,
w=in_w,
num_frames=max(36, min(60, mid_idx // 2)),
)
tgt_c2w = torch.cat(
[
tgt_c2w[:, :mid_idx],
c2w_wd.unsqueeze(0),
c2w_dz.unsqueeze(0),
tgt_c2w[:, mid_idx:],
],
dim=1,
)
tgt_intr = torch.cat(
[
tgt_intr[:, :mid_idx],
intr_wd.unsqueeze(0),
intr_dz.unsqueeze(0),
tgt_intr[:, mid_idx:],
],
dim=1,
)
elif trj_mode in ["wander", "dolly_zoom"]:
if trj_mode == "wander":
render_fn = render_wander_path
extra_kwargs = {"max_disp": 24.0}
else:
render_fn = render_dolly_zoom_path
extra_kwargs = {"D_focus": 30.0, "max_disp": 2.0}
tgt_c2w = []
tgt_intr = []
for b_idx in range(cam2world.shape[0]):
c2w_i, intr_i = render_fn(
cam2world[b_idx, 0], intr_normed[b_idx, 0], h=in_h, w=in_w, **extra_kwargs
)
tgt_c2w.append(c2w_i)
tgt_intr.append(intr_i)
tgt_c2w = torch.stack(tgt_c2w)
tgt_intr = torch.stack(tgt_intr)
elif trj_mode == "wobble_inter":
tgt_c2w, tgt_intr = render_wobble_inter_path(
cam2world=cam2world,
intr_normed=intr_normed,
inter_len=10,
n_skip=3,
)
else:
raise Exception(f"trj mode [{trj_mode}] is not implemented.")
_, v = tgt_c2w.shape[:2]
tgt_extr = affine_inverse(tgt_c2w)
if chunk_size is None:
chunk_size = v
chunk_size = min(v, chunk_size)
all_colors = []
all_depths = []
for chunk_idx in tqdm(
range(math.ceil(v / chunk_size)),
desc="Rendering novel views",
disable=(not enable_tqdm),
leave=False,
):
s = int(chunk_idx * chunk_size)
e = int((chunk_idx + 1) * chunk_size)
cur_n_view = tgt_extr[:, s:e].shape[1]
color, depth = render_3dgs(
extrinsics=rearrange(tgt_extr[:, s:e], "b v ... -> (b v) ..."), # w2c
intrinsics=rearrange(tgt_intr[:, s:e], "b v ... -> (b v) ..."), # normed
image_shape=image_shape,
gaussian=gaussians,
num_view=cur_n_view,
**kwargs,
)
all_colors.append(rearrange(color, "(b v) ... -> b v ...", v=cur_n_view))
all_depths.append(rearrange(depth, "(b v) ... -> b v ...", v=cur_n_view))
all_colors = torch.cat(all_colors, dim=1)
all_depths = torch.cat(all_depths, dim=1)
return all_colors, all_depths