linhaotong
update
b9f87ab
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Unified Inference Service
Provides unified interface for local and remote inference
"""
from typing import Any, Dict, List, Optional, Union
import numpy as np
import requests
import typer
from ..api import DepthAnything3
class InferenceService:
"""Unified inference service class"""
def __init__(self, model_dir: str, device: str = "cuda"):
self.model_dir = model_dir
self.device = device
self.model = None
def load_model(self):
"""Load model"""
if self.model is None:
typer.echo(f"Loading model from {self.model_dir}...")
self.model = DepthAnything3.from_pretrained(self.model_dir).to(self.device)
return self.model
def run_local_inference(
self,
image_paths: List[str],
export_dir: str,
export_format: str = "mini_npz-glb",
process_res: int = 504,
process_res_method: str = "upper_bound_resize",
export_feat_layers: List[int] = None,
extrinsics: Optional[np.ndarray] = None,
intrinsics: Optional[np.ndarray] = None,
align_to_input_ext_scale: bool = True,
conf_thresh_percentile: float = 40.0,
num_max_points: int = 1_000_000,
show_cameras: bool = True,
feat_vis_fps: int = 15,
) -> Any:
"""Run local inference"""
if export_feat_layers is None:
export_feat_layers = []
model = self.load_model()
# Prepare inference parameters
inference_kwargs = {
"image": image_paths,
"export_dir": export_dir,
"export_format": export_format,
"process_res": process_res,
"process_res_method": process_res_method,
"export_feat_layers": export_feat_layers,
"align_to_input_ext_scale": align_to_input_ext_scale,
"conf_thresh_percentile": conf_thresh_percentile,
"num_max_points": num_max_points,
"show_cameras": show_cameras,
"feat_vis_fps": feat_vis_fps,
}
# Add pose data (if exists)
if extrinsics is not None:
inference_kwargs["extrinsics"] = extrinsics
if intrinsics is not None:
inference_kwargs["intrinsics"] = intrinsics
# Run inference
typer.echo(f"Running inference on {len(image_paths)} images...")
prediction = model.inference(**inference_kwargs)
typer.echo(f"Results saved to {export_dir}")
typer.echo(f"Export format: {export_format}")
return prediction
def run_backend_inference(
self,
image_paths: List[str],
export_dir: str,
backend_url: str,
export_format: str = "mini_npz-glb",
process_res: int = 504,
process_res_method: str = "upper_bound_resize",
export_feat_layers: List[int] = None,
extrinsics: Optional[np.ndarray] = None,
intrinsics: Optional[np.ndarray] = None,
align_to_input_ext_scale: bool = True,
conf_thresh_percentile: float = 40.0,
num_max_points: int = 1_000_000,
show_cameras: bool = True,
feat_vis_fps: int = 15,
) -> Dict[str, Any]:
"""Run backend inference"""
if export_feat_layers is None:
export_feat_layers = []
# Check backend status
if not self._check_backend_status(backend_url):
raise typer.BadParameter(f"Backend service is not running at {backend_url}")
# Prepare payload
payload = {
"image_paths": image_paths,
"export_dir": export_dir,
"export_format": export_format,
"process_res": process_res,
"process_res_method": process_res_method,
"export_feat_layers": export_feat_layers,
"align_to_input_ext_scale": align_to_input_ext_scale,
"conf_thresh_percentile": conf_thresh_percentile,
"num_max_points": num_max_points,
"show_cameras": show_cameras,
"feat_vis_fps": feat_vis_fps,
}
# Add pose data (if exists)
if extrinsics is not None:
payload["extrinsics"] = [ext.astype(np.float64).tolist() for ext in extrinsics]
if intrinsics is not None:
payload["intrinsics"] = [intr.astype(np.float64).tolist() for intr in intrinsics]
# Submit task
typer.echo("Submitting inference task to backend...")
try:
response = requests.post(f"{backend_url}/inference", json=payload, timeout=30)
response.raise_for_status()
result = response.json()
if result["success"]:
task_id = result["task_id"]
typer.echo("Task submitted successfully!")
typer.echo(f"Task ID: {task_id}")
typer.echo(f"Results will be saved to: {export_dir}")
typer.echo(f"Check backend logs for progress updates with task ID: {task_id}")
return result
else:
raise typer.BadParameter(
f"Backend inference submission failed: {result['message']}"
)
except requests.exceptions.RequestException as e:
raise typer.BadParameter(f"Backend inference submission failed: {e}")
def _check_backend_status(self, backend_url: str) -> bool:
"""Check backend status"""
try:
response = requests.get(f"{backend_url}/status", timeout=5)
return response.status_code == 200
except Exception:
return False
def run_inference(
image_paths: List[str],
export_dir: str,
model_dir: str,
device: str = "cuda",
backend_url: Optional[str] = None,
export_format: str = "mini_npz-glb",
process_res: int = 504,
process_res_method: str = "upper_bound_resize",
export_feat_layers: List[int] = None,
extrinsics: Optional[np.ndarray] = None,
intrinsics: Optional[np.ndarray] = None,
align_to_input_ext_scale: bool = True,
conf_thresh_percentile: float = 40.0,
num_max_points: int = 1_000_000,
show_cameras: bool = True,
feat_vis_fps: int = 15,
) -> Union[Any, Dict[str, Any]]:
"""Unified inference interface"""
service = InferenceService(model_dir, device)
if backend_url:
return service.run_backend_inference(
image_paths=image_paths,
export_dir=export_dir,
backend_url=backend_url,
export_format=export_format,
process_res=process_res,
process_res_method=process_res_method,
export_feat_layers=export_feat_layers,
extrinsics=extrinsics,
intrinsics=intrinsics,
align_to_input_ext_scale=align_to_input_ext_scale,
conf_thresh_percentile=conf_thresh_percentile,
num_max_points=num_max_points,
show_cameras=show_cameras,
feat_vis_fps=feat_vis_fps,
)
else:
return service.run_local_inference(
image_paths=image_paths,
export_dir=export_dir,
export_format=export_format,
process_res=process_res,
process_res_method=process_res_method,
export_feat_layers=export_feat_layers,
extrinsics=extrinsics,
intrinsics=intrinsics,
align_to_input_ext_scale=align_to_input_ext_scale,
conf_thresh_percentile=conf_thresh_percentile,
num_max_points=num_max_points,
show_cameras=show_cameras,
feat_vis_fps=feat_vis_fps,
)