# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn class CameraDec(nn.Module): def __init__(self, dim_in=1536): super().__init__() output_dim = dim_in self.backbone = nn.Sequential( nn.Linear(output_dim, output_dim), nn.ReLU(), nn.Linear(output_dim, output_dim), nn.ReLU(), ) self.fc_t = nn.Linear(output_dim, 3) self.fc_qvec = nn.Linear(output_dim, 4) self.fc_fov = nn.Sequential(nn.Linear(output_dim, 2), nn.ReLU()) def forward(self, feat, camera_encoding=None, *args, **kwargs): B, N = feat.shape[:2] feat = feat.reshape(B * N, -1) feat = self.backbone(feat) out_t = self.fc_t(feat.float()).reshape(B, N, 3) if camera_encoding is None: out_qvec = self.fc_qvec(feat.float()).reshape(B, N, 4) out_fov = self.fc_fov(feat.float()).reshape(B, N, 2) else: out_qvec = camera_encoding[..., 3:7] out_fov = camera_encoding[..., -2:] pose_enc = torch.cat([out_t, out_qvec, out_fov], dim=-1) return pose_enc