# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110 # noqa from typing import Callable, Optional, Union import torch import torch.nn.functional as F from torch import Tensor, nn class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = True, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, norm_layer: nn.Module = nn.LayerNorm, qk_norm: bool = False, rope=None, ) -> None: super().__init__() assert dim % num_heads == 0, "dim should be divisible by num_heads" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) self.rope = rope def forward(self, x: Tensor, pos=None, attn_mask=None) -> Tensor: # Debug breakpoint removed for production B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) q = self.rope(q, pos) if self.rope is not None else q k = self.rope(k, pos) if self.rope is not None else k x = F.scaled_dot_product_attention( q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0, attn_mask=attn_mask, ) x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class LayerScale(nn.Module): def __init__( self, dim: int, init_values: Union[float, Tensor] = 1e-5, inplace: bool = False, ) -> None: super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x: Tensor) -> Tensor: return x.mul_(self.gamma) if self.inplace else x * self.gamma class Mlp(nn.Module): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Callable[..., nn.Module] = nn.GELU, drop: float = 0.0, bias: bool = True, ) -> None: super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) self.drop = nn.Dropout(drop) def forward(self, x: Tensor) -> Tensor: x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x