Spaces:
Sleeping
Sleeping
Upload 3 files
Browse filesThis version uses llms thrice.
1. To generate the questions from a small context.
2. To generate a prompt based on context and the question and answers.
3. To generate the personalized invites as per the designed user prompt.
- app.py +454 -109
- groq_llms.py +225 -0
app.py
CHANGED
|
@@ -1,109 +1,454 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import pandas as pd
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
st.
|
| 38 |
-
st.
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
st.
|
| 47 |
-
st.
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
st.
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from groq_llms import LLMHandler
|
| 4 |
+
import tempfile
|
| 5 |
+
import os
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
|
| 8 |
+
load_dotenv()
|
| 9 |
+
|
| 10 |
+
# Initialize LLMHandler
|
| 11 |
+
llm_handler = LLMHandler()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def process_csv(file, user_prompt):
|
| 15 |
+
"""Read CSV, generate responses using LLMHandler, and return processed DataFrame."""
|
| 16 |
+
df = pd.read_csv(file)
|
| 17 |
+
responses = []
|
| 18 |
+
|
| 19 |
+
for _, row in df.iterrows():
|
| 20 |
+
try:
|
| 21 |
+
response = llm_handler.generate_response(user_prompt, row.to_dict())
|
| 22 |
+
responses.append(response)
|
| 23 |
+
except Exception as e:
|
| 24 |
+
responses.append(f"Error: {e}")
|
| 25 |
+
|
| 26 |
+
df["Generated Text"] = responses
|
| 27 |
+
return df
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def initialize_session_state():
|
| 31 |
+
"""Initialize session state variables"""
|
| 32 |
+
if 'prompt_creation_method' not in st.session_state:
|
| 33 |
+
st.session_state.prompt_creation_method = None
|
| 34 |
+
if 'current_step' not in st.session_state:
|
| 35 |
+
st.session_state.current_step = 'choose_method'
|
| 36 |
+
if 'context' not in st.session_state:
|
| 37 |
+
st.session_state.context = ""
|
| 38 |
+
if 'questions' not in st.session_state:
|
| 39 |
+
st.session_state.questions = []
|
| 40 |
+
if 'answers' not in st.session_state:
|
| 41 |
+
st.session_state.answers = {}
|
| 42 |
+
if 'multiselect_answers' not in st.session_state:
|
| 43 |
+
st.session_state.multiselect_answers = {}
|
| 44 |
+
if 'custom_options' not in st.session_state:
|
| 45 |
+
st.session_state.custom_options = {}
|
| 46 |
+
if 'final_prompt' not in st.session_state:
|
| 47 |
+
st.session_state.final_prompt = ""
|
| 48 |
+
if 'direct_prompt' not in st.session_state:
|
| 49 |
+
st.session_state.direct_prompt = ""
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def display_progress_tracker():
|
| 53 |
+
"""Display current progress and previous responses"""
|
| 54 |
+
with st.expander("📋 View Progress", expanded=True):
|
| 55 |
+
if st.session_state.prompt_creation_method:
|
| 56 |
+
st.write(f"**Method chosen:** {st.session_state.prompt_creation_method.title()}")
|
| 57 |
+
|
| 58 |
+
if st.session_state.context:
|
| 59 |
+
st.write("**Initial Context:**")
|
| 60 |
+
st.info(st.session_state.context)
|
| 61 |
+
if st.button("Edit Context", key="edit_context"):
|
| 62 |
+
st.session_state.current_step = 'initial_context'
|
| 63 |
+
st.rerun()
|
| 64 |
+
|
| 65 |
+
if st.session_state.answers:
|
| 66 |
+
st.write("**Your Responses:**")
|
| 67 |
+
for i, question in enumerate(st.session_state.questions):
|
| 68 |
+
if i in st.session_state.multiselect_answers:
|
| 69 |
+
answers = ", ".join(st.session_state.multiselect_answers[i])
|
| 70 |
+
st.success(f"Q: {question['question']}\nA: {answers}")
|
| 71 |
+
elif i in st.session_state.answers:
|
| 72 |
+
st.success(f"Q: {question['question']}\nA: {st.session_state.answers[i]}")
|
| 73 |
+
if st.button("Edit Responses", key="edit_responses"):
|
| 74 |
+
st.session_state.current_step = 'answer_questions'
|
| 75 |
+
st.rerun()
|
| 76 |
+
|
| 77 |
+
if st.session_state.direct_prompt:
|
| 78 |
+
st.write("**Your Direct Prompt:**")
|
| 79 |
+
st.info(st.session_state.direct_prompt)
|
| 80 |
+
if st.button("Edit Prompt", key="edit_direct_prompt"):
|
| 81 |
+
st.session_state.current_step = 'direct_prompt'
|
| 82 |
+
st.rerun()
|
| 83 |
+
|
| 84 |
+
if st.session_state.final_prompt:
|
| 85 |
+
st.write("**Final Generated Prompt:**")
|
| 86 |
+
st.info(st.session_state.final_prompt)
|
| 87 |
+
if st.button("Edit Final Prompt", key="edit_final_prompt"):
|
| 88 |
+
st.session_state.current_step = 'edit_prompt'
|
| 89 |
+
st.rerun()
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# Streamlit UI
|
| 93 |
+
st.set_page_config(page_title="Invite AI", page_icon="💬", layout="wide")
|
| 94 |
+
|
| 95 |
+
# Header
|
| 96 |
+
st.title("Invite AI")
|
| 97 |
+
st.markdown(
|
| 98 |
+
"""
|
| 99 |
+
Welcome to the Invitation Generator! This tool helps you create personalized invitations using the power of AI.
|
| 100 |
+
"""
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Initialize session state
|
| 104 |
+
initialize_session_state()
|
| 105 |
+
|
| 106 |
+
# Display progress tracker (always visible)
|
| 107 |
+
display_progress_tracker()
|
| 108 |
+
|
| 109 |
+
# Sidebar with instructions
|
| 110 |
+
st.sidebar.title("Instructions")
|
| 111 |
+
st.sidebar.markdown(
|
| 112 |
+
"""
|
| 113 |
+
### Template Download
|
| 114 |
+
[Click here to download the suggested CSV template](http://surl.li/ptvzzv) 📥
|
| 115 |
+
### Suggested Requirements
|
| 116 |
+
- **Unique Identifier for each receiver**
|
| 117 |
+
- **Name of the receiver**
|
| 118 |
+
- **Designation/Job title of the receiver**
|
| 119 |
+
- **Company/Organisation where the receiver works**
|
| 120 |
+
- **Areas the receiver is interested in / has expertise in**
|
| 121 |
+
- **Categorize receivers into groups**
|
| 122 |
+
|
| 123 |
+
[Note: The above template is for your reference, you are free to submit your own data.]
|
| 124 |
+
"""
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Main content area with steps
|
| 128 |
+
st.markdown("---") # Separator between progress tracker and current step
|
| 129 |
+
|
| 130 |
+
if st.session_state.current_step == 'choose_method':
|
| 131 |
+
st.subheader("Choose Your Prompt Creation Method")
|
| 132 |
+
|
| 133 |
+
col1, col2 = st.columns(2)
|
| 134 |
+
|
| 135 |
+
with col1:
|
| 136 |
+
st.markdown("""
|
| 137 |
+
### Guided Prompt Builder
|
| 138 |
+
- Step-by-step assistance
|
| 139 |
+
- AI-generated questions
|
| 140 |
+
- Structured approach
|
| 141 |
+
""")
|
| 142 |
+
if st.button("Use Guided Builder"):
|
| 143 |
+
st.session_state.prompt_creation_method = 'guided'
|
| 144 |
+
st.session_state.current_step = 'initial_context'
|
| 145 |
+
st.rerun()
|
| 146 |
+
|
| 147 |
+
with col2:
|
| 148 |
+
st.markdown("""
|
| 149 |
+
### Direct Prompt Entry
|
| 150 |
+
- Write your own prompt
|
| 151 |
+
- Complete control
|
| 152 |
+
- Quick setup
|
| 153 |
+
""")
|
| 154 |
+
if st.button("Use Direct Entry"):
|
| 155 |
+
st.session_state.prompt_creation_method = 'direct'
|
| 156 |
+
st.session_state.current_step = 'direct_prompt'
|
| 157 |
+
st.rerun()
|
| 158 |
+
|
| 159 |
+
elif st.session_state.current_step == 'direct_prompt':
|
| 160 |
+
st.subheader("Enter Your Prompt")
|
| 161 |
+
st.markdown(
|
| 162 |
+
"Write your complete prompt for generating invitations. Include all necessary details and requirements.")
|
| 163 |
+
|
| 164 |
+
direct_prompt = st.text_area(
|
| 165 |
+
"Your Prompt:",
|
| 166 |
+
value=st.session_state.direct_prompt,
|
| 167 |
+
placeholder="Example: Generate a professional invitation for a product launch...",
|
| 168 |
+
height=200
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
col1, col2 = st.columns([1, 5])
|
| 172 |
+
with col1:
|
| 173 |
+
if st.button("← Back"):
|
| 174 |
+
st.session_state.current_step = 'choose_method'
|
| 175 |
+
st.rerun()
|
| 176 |
+
with col2:
|
| 177 |
+
if st.button("Continue →"):
|
| 178 |
+
if direct_prompt:
|
| 179 |
+
st.session_state.direct_prompt = direct_prompt
|
| 180 |
+
st.session_state.final_prompt = direct_prompt
|
| 181 |
+
st.session_state.current_step = 'upload_process'
|
| 182 |
+
st.rerun()
|
| 183 |
+
else:
|
| 184 |
+
st.error("Please enter a prompt before continuing.")
|
| 185 |
+
|
| 186 |
+
elif st.session_state.prompt_creation_method == 'guided':
|
| 187 |
+
if st.session_state.current_step == 'initial_context':
|
| 188 |
+
st.subheader("Step 1: Provide Initial Context")
|
| 189 |
+
st.markdown("Briefly describe what your invitation is about (e.g., 'Launching a new GPU product')")
|
| 190 |
+
|
| 191 |
+
context = st.text_area(
|
| 192 |
+
"Context:",
|
| 193 |
+
value=st.session_state.context,
|
| 194 |
+
placeholder="Example: Launching a new GPU product for AI and HPC applications",
|
| 195 |
+
height=100
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
col1, col2 = st.columns([1, 5])
|
| 199 |
+
with col1:
|
| 200 |
+
if st.button("← Back"):
|
| 201 |
+
st.session_state.current_step = 'choose_method'
|
| 202 |
+
st.rerun()
|
| 203 |
+
with col2:
|
| 204 |
+
if st.button("Generate Questions →"):
|
| 205 |
+
if context:
|
| 206 |
+
st.session_state.context = context
|
| 207 |
+
st.session_state.questions = llm_handler.generate_questions(context)
|
| 208 |
+
st.session_state.current_step = 'answer_questions'
|
| 209 |
+
st.rerun()
|
| 210 |
+
else:
|
| 211 |
+
st.error("Please provide context before proceeding.")
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
# In the answer_questions section of your code, replace the multiselect implementation with this:
|
| 215 |
+
|
| 216 |
+
elif st.session_state.current_step == 'answer_questions':
|
| 217 |
+
|
| 218 |
+
st.subheader("Step 2: Answer Questions")
|
| 219 |
+
|
| 220 |
+
for i, question in enumerate(st.session_state.questions):
|
| 221 |
+
|
| 222 |
+
if 'choices' in question:
|
| 223 |
+
|
| 224 |
+
# Get previously selected options
|
| 225 |
+
|
| 226 |
+
previous_selections = st.session_state.multiselect_answers.get(i, [])
|
| 227 |
+
|
| 228 |
+
# Initialize base choices
|
| 229 |
+
|
| 230 |
+
base_choices = question['choices'].copy()
|
| 231 |
+
|
| 232 |
+
if "Custom" not in base_choices:
|
| 233 |
+
base_choices.append("Custom")
|
| 234 |
+
|
| 235 |
+
# Add any previous custom value to the choices if it exists
|
| 236 |
+
|
| 237 |
+
custom_values = [x for x in previous_selections if x not in question['choices'] and x != "Custom"]
|
| 238 |
+
|
| 239 |
+
all_choices = base_choices + custom_values
|
| 240 |
+
|
| 241 |
+
# Handle word count questions differently
|
| 242 |
+
|
| 243 |
+
if any(word in question['question'].lower() for word in ['word count', 'words', 'length']):
|
| 244 |
+
|
| 245 |
+
selected_options = st.multiselect(
|
| 246 |
+
|
| 247 |
+
question['question'],
|
| 248 |
+
|
| 249 |
+
options=all_choices,
|
| 250 |
+
|
| 251 |
+
default=previous_selections,
|
| 252 |
+
|
| 253 |
+
key=f"multiselect_{i}"
|
| 254 |
+
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
if "Custom" in selected_options:
|
| 258 |
+
|
| 259 |
+
# Pre-fill with previous custom value if exists
|
| 260 |
+
|
| 261 |
+
default_custom = next((x for x in previous_selections if x not in base_choices), "")
|
| 262 |
+
|
| 263 |
+
custom_value = st.text_input(
|
| 264 |
+
|
| 265 |
+
"Enter custom word count:",
|
| 266 |
+
|
| 267 |
+
value=default_custom,
|
| 268 |
+
|
| 269 |
+
key=f"custom_{i}"
|
| 270 |
+
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
if custom_value:
|
| 274 |
+
|
| 275 |
+
try:
|
| 276 |
+
|
| 277 |
+
word_count = int(custom_value)
|
| 278 |
+
|
| 279 |
+
if word_count > 0:
|
| 280 |
+
|
| 281 |
+
selected_options = [opt for opt in selected_options if opt != "Custom"]
|
| 282 |
+
|
| 283 |
+
if str(word_count) not in selected_options:
|
| 284 |
+
selected_options.append(str(word_count))
|
| 285 |
+
|
| 286 |
+
else:
|
| 287 |
+
|
| 288 |
+
st.error("Please enter a positive number")
|
| 289 |
+
|
| 290 |
+
except ValueError:
|
| 291 |
+
|
| 292 |
+
st.error("Please enter a valid number")
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
else:
|
| 296 |
+
|
| 297 |
+
# Regular non-numeric multiselect handling
|
| 298 |
+
|
| 299 |
+
selected_options = st.multiselect(
|
| 300 |
+
|
| 301 |
+
question['question'],
|
| 302 |
+
|
| 303 |
+
options=all_choices,
|
| 304 |
+
|
| 305 |
+
default=previous_selections,
|
| 306 |
+
|
| 307 |
+
key=f"multiselect_{i}"
|
| 308 |
+
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
if "Custom" in selected_options:
|
| 312 |
+
|
| 313 |
+
# Pre-fill with previous custom value if exists
|
| 314 |
+
|
| 315 |
+
default_custom = next((x for x in previous_selections if x not in base_choices), "")
|
| 316 |
+
|
| 317 |
+
custom_value = st.text_input(
|
| 318 |
+
|
| 319 |
+
"Enter your custom response:",
|
| 320 |
+
|
| 321 |
+
value=default_custom,
|
| 322 |
+
|
| 323 |
+
key=f"custom_{i}"
|
| 324 |
+
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
if custom_value:
|
| 328 |
+
|
| 329 |
+
selected_options = [opt for opt in selected_options if opt != "Custom"]
|
| 330 |
+
|
| 331 |
+
if custom_value not in selected_options:
|
| 332 |
+
selected_options.append(custom_value)
|
| 333 |
+
|
| 334 |
+
# Update session state
|
| 335 |
+
|
| 336 |
+
st.session_state.multiselect_answers[i] = selected_options
|
| 337 |
+
|
| 338 |
+
st.session_state.answers[i] = ", ".join(selected_options) if selected_options else ""
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
else:
|
| 342 |
+
|
| 343 |
+
# Handle non-choice questions
|
| 344 |
+
|
| 345 |
+
st.session_state.answers[i] = st.text_input(
|
| 346 |
+
|
| 347 |
+
question['question'],
|
| 348 |
+
|
| 349 |
+
value=st.session_state.answers.get(i, ""),
|
| 350 |
+
|
| 351 |
+
key=f"question_{i}"
|
| 352 |
+
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
col1, col2 = st.columns([1, 5])
|
| 356 |
+
|
| 357 |
+
with col1:
|
| 358 |
+
|
| 359 |
+
if st.button("← Back"):
|
| 360 |
+
st.session_state.current_step = 'initial_context'
|
| 361 |
+
|
| 362 |
+
st.rerun()
|
| 363 |
+
|
| 364 |
+
with col2:
|
| 365 |
+
|
| 366 |
+
if st.button("Generate Prompt →"):
|
| 367 |
+
|
| 368 |
+
if all(st.session_state.answers.values()):
|
| 369 |
+
|
| 370 |
+
st.session_state.final_prompt = llm_handler.generate_final_prompt(
|
| 371 |
+
|
| 372 |
+
st.session_state.context,
|
| 373 |
+
|
| 374 |
+
st.session_state.questions,
|
| 375 |
+
|
| 376 |
+
st.session_state.answers
|
| 377 |
+
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
st.session_state.current_step = 'edit_prompt'
|
| 381 |
+
|
| 382 |
+
st.rerun()
|
| 383 |
+
|
| 384 |
+
else:
|
| 385 |
+
|
| 386 |
+
st.error("Please answer all questions before proceeding.")
|
| 387 |
+
elif st.session_state.current_step == 'edit_prompt':
|
| 388 |
+
st.subheader("Step 3: Review and Edit Final Prompt")
|
| 389 |
+
edited_prompt = st.text_area(
|
| 390 |
+
"Edit your prompt if needed:",
|
| 391 |
+
value=st.session_state.final_prompt,
|
| 392 |
+
height=200
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
col1, col2 = st.columns([1, 5])
|
| 396 |
+
with col1:
|
| 397 |
+
if st.button("← Back"):
|
| 398 |
+
st.session_state.current_step = 'answer_questions'
|
| 399 |
+
st.rerun()
|
| 400 |
+
with col2:
|
| 401 |
+
if st.button("Continue to Upload →"):
|
| 402 |
+
st.session_state.final_prompt = edited_prompt
|
| 403 |
+
st.session_state.current_step = 'upload_process'
|
| 404 |
+
st.rerun()
|
| 405 |
+
|
| 406 |
+
# Common upload and processing section for both paths
|
| 407 |
+
if st.session_state.current_step == 'upload_process':
|
| 408 |
+
st.subheader("Upload and Process")
|
| 409 |
+
uploaded_file = st.file_uploader("📂 Upload CSV File", type=["csv"])
|
| 410 |
+
|
| 411 |
+
col1, col2 = st.columns([1, 5])
|
| 412 |
+
with col1:
|
| 413 |
+
if st.button("← Back"):
|
| 414 |
+
if st.session_state.prompt_creation_method == 'guided':
|
| 415 |
+
st.session_state.current_step = 'edit_prompt'
|
| 416 |
+
else:
|
| 417 |
+
st.session_state.current_step = 'direct_prompt'
|
| 418 |
+
st.rerun()
|
| 419 |
+
|
| 420 |
+
if uploaded_file is not None and st.session_state.final_prompt:
|
| 421 |
+
st.write("⏳ Processing your file... Please wait.")
|
| 422 |
+
processed_df = process_csv(uploaded_file, st.session_state.final_prompt)
|
| 423 |
+
|
| 424 |
+
st.write("### Generated Invitations")
|
| 425 |
+
st.dataframe(processed_df, use_container_width=True)
|
| 426 |
+
|
| 427 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as temp_file:
|
| 428 |
+
processed_df.to_csv(temp_file.name, index=False)
|
| 429 |
+
temp_file.close()
|
| 430 |
+
|
| 431 |
+
st.download_button(
|
| 432 |
+
label="📥 Download Results CSV",
|
| 433 |
+
data=open(temp_file.name, "rb"),
|
| 434 |
+
file_name="generated_invitations.csv",
|
| 435 |
+
mime="text/csv",
|
| 436 |
+
)
|
| 437 |
+
os.unlink(temp_file.name)
|
| 438 |
+
|
| 439 |
+
# Reset button (moved to sidebar)
|
| 440 |
+
st.sidebar.markdown("---")
|
| 441 |
+
if st.sidebar.button("🔄 Start Over"):
|
| 442 |
+
st.session_state.prompt_creation_method = None
|
| 443 |
+
st.session_state.current_step = 'choose_method'
|
| 444 |
+
st.session_state.context = ""
|
| 445 |
+
st.session_state.questions = []
|
| 446 |
+
st.session_state.answers = {}
|
| 447 |
+
st.session_state.multiselect_answers = {}
|
| 448 |
+
st.session_state.custom_options = {}
|
| 449 |
+
st.session_state.final_prompt = ""
|
| 450 |
+
st.session_state.direct_prompt = ""
|
| 451 |
+
st.rerun()
|
| 452 |
+
|
| 453 |
+
st.markdown("---")
|
| 454 |
+
st.markdown("💡 **Tip:** Ensure your data aligns with the provided template for accurate results.")
|
groq_llms.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from langchain_groq import ChatGroq
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
|
| 5 |
+
load_dotenv()
|
| 6 |
+
|
| 7 |
+
class LLMHandler:
|
| 8 |
+
def __init__(self, model_name="llama-3.3-70b-versatile"):
|
| 9 |
+
self.groq_api_key = os.getenv("GROQ_API_KEY")
|
| 10 |
+
if not self.groq_api_key:
|
| 11 |
+
raise ValueError("GROQ_API_KEY environment variable not set.")
|
| 12 |
+
self.llm = ChatGroq(groq_api_key=self.groq_api_key, model_name=model_name)
|
| 13 |
+
|
| 14 |
+
def generate_questions(self, context):
|
| 15 |
+
"""Generate questions based on the initial context provided by the user."""
|
| 16 |
+
prompt = f"""
|
| 17 |
+
Based on this context about an invitation: "{context}"
|
| 18 |
+
|
| 19 |
+
Generate questions to gather necessary information for creating a professional invitation prompt.
|
| 20 |
+
|
| 21 |
+
Generate 8-12 focused questions. Include multiple choice options where appropriate.
|
| 22 |
+
Questions should cover:
|
| 23 |
+
1. Senders Company/Organization and role details
|
| 24 |
+
2. Product/service specific details
|
| 25 |
+
3. Key specifications or features
|
| 26 |
+
4. Approximate length of the invite [Word count]
|
| 27 |
+
5. What information from the receivers details do you want to include and influence in the invite
|
| 28 |
+
6. Tone and style preferences
|
| 29 |
+
7. Additional information which you would like to provide [Type N/A if you wish not to]
|
| 30 |
+
8. Call to action [multiple choice] for example [ contact phone number, visit our website, visit our social media etc]
|
| 31 |
+
9. In context to Call to action question, ask a followup question [Textual response] for CTA
|
| 32 |
+
to collect the website link/ phone number/ social media handles etc.
|
| 33 |
+
|
| 34 |
+
Return the questions in this exact JSON format:
|
| 35 |
+
[
|
| 36 |
+
{{"question": "Question 1", "choices": ["Choice 1", "Choice 2"]}},
|
| 37 |
+
{{"question": "Question 2"}},
|
| 38 |
+
{{"question": "Question 3", "choices": ["Choice 1", "Choice 2", "Choice 3"]}}
|
| 39 |
+
]
|
| 40 |
+
|
| 41 |
+
For questions without multiple choice options, omit the 'choices' key.
|
| 42 |
+
Make choices relevant but not exhaustive, as users will have option for custom responses.
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
# Default questions to use as fallback
|
| 46 |
+
default_questions = [
|
| 47 |
+
{
|
| 48 |
+
"question": "What is your role in the company?",
|
| 49 |
+
"choices": ["CEO", "CTO", "Director", "Product Manager"]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"question": "What is your company name?",
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"question": "What is the name of your product/service?",
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"question": "What is the suggested Invite lenght[word count] you prefer?",
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"question": "What is the key technical specification or feature?",
|
| 62 |
+
},
|
| 63 |
+
#{
|
| 64 |
+
# "question": "What are the primary target applications?",
|
| 65 |
+
# "choices": ["AI/ML", "Scientific Computing", "Graphics/Gaming", "Enterprise"]
|
| 66 |
+
#},
|
| 67 |
+
{
|
| 68 |
+
"question": "Can you explain in brief about what the invite is about?",
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"question": "Select the preferred tone for the invitation:",
|
| 72 |
+
"choices": ["Professional", "Innovation-focused", "Casual", "Business & Strategic", "Friendly"]
|
| 73 |
+
}
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
try:
|
| 77 |
+
# Get response from LLM
|
| 78 |
+
response = self.llm.invoke(prompt)
|
| 79 |
+
|
| 80 |
+
# Extract the JSON string from the response
|
| 81 |
+
response_text = response.content.strip()
|
| 82 |
+
|
| 83 |
+
# Find the start and end of the JSON array
|
| 84 |
+
start_idx = response_text.find('[')
|
| 85 |
+
end_idx = response_text.rfind(']') + 1
|
| 86 |
+
|
| 87 |
+
if start_idx == -1 or end_idx == 0:
|
| 88 |
+
raise ValueError("Could not find JSON array in response")
|
| 89 |
+
|
| 90 |
+
json_str = response_text[start_idx:end_idx]
|
| 91 |
+
|
| 92 |
+
# Parse the JSON string
|
| 93 |
+
import json
|
| 94 |
+
questions = json.loads(json_str)
|
| 95 |
+
|
| 96 |
+
# Validate the question format
|
| 97 |
+
for question in questions:
|
| 98 |
+
if 'question' not in question:
|
| 99 |
+
raise ValueError("Question missing 'question' field")
|
| 100 |
+
if 'choices' in question and not isinstance(question['choices'], list):
|
| 101 |
+
raise ValueError("'choices' must be a list")
|
| 102 |
+
|
| 103 |
+
# If we successfully parsed the questions, return them
|
| 104 |
+
return questions
|
| 105 |
+
|
| 106 |
+
except Exception as e:
|
| 107 |
+
#print(f"Error parsing LLM response: {str(e)}")
|
| 108 |
+
print("Using default questions as fallback")
|
| 109 |
+
return default_questions
|
| 110 |
+
|
| 111 |
+
def generate_final_prompt(self, context, questions, answers):
|
| 112 |
+
"""Generate the final prompt based on context and question answers."""
|
| 113 |
+
# Create a formatted string of answers, handling both predefined and custom responses
|
| 114 |
+
formatted_answers = []
|
| 115 |
+
for i, question in enumerate(questions):
|
| 116 |
+
answer = answers[i]
|
| 117 |
+
formatted_answers.append(f"Q: {question['question']}\nA: {answer}")
|
| 118 |
+
|
| 119 |
+
answers_text = "\n".join(formatted_answers)
|
| 120 |
+
prompt = (
|
| 121 |
+
f"Your task is to generate a professional prompt for invitation generation by using the below context and answers: \n"
|
| 122 |
+
f" The initial context provided by user to generate the questions are [Context] :{context} and"
|
| 123 |
+
f" The questions and answers provide detail information on how the prompt has to be designed [Answers]: {answers_text}. \n"
|
| 124 |
+
f" Please follow the below instructions while drafting the prompt: \n"
|
| 125 |
+
f" 1. Use the Complete Information in the context and answers. \n"
|
| 126 |
+
f" 2. You Should draft best suitable prompt that can be used for generating personalized invites based on the information provided by user. \n"
|
| 127 |
+
f" 3. Generate only the prompt and DO NOT include any statements like this in the beginning: \n"
|
| 128 |
+
f" [Here is a professional prompt for invitation generation based on the provided context and answers] \n"
|
| 129 |
+
#f"In addition, make sure the prompt generated includes the below points: \n"
|
| 130 |
+
#f" 1. If the receivers information is not related to context and answers, generate a professional generic invite.\n "
|
| 131 |
+
#f" for example: If the context is about gpu device, the receiver is a farmer, then provide a generic response highlighting its features. \n"
|
| 132 |
+
#f"but if the receiver is GENAI engineer, provide an invite highlighting on how it is suitable to their needs and ease their work. "
|
| 133 |
+
#f" 2. Aptly fit the receivers information in the invite and make sure it is not forcefully added in the invite"
|
| 134 |
+
f" The goal is by using this prompt, the user can obtain personalized invites to wide range of receivers work domain."
|
| 135 |
+
)
|
| 136 |
+
#response = self.llm.invoke(prompt)
|
| 137 |
+
#return response.content.strip()
|
| 138 |
+
prompt2 = f"""
|
| 139 |
+
Based on the initial context: "{context}" and the provided answers: {answers_text},
|
| 140 |
+
Generate a professional prompt for invitation generation by USING COMPLETE INFORMATION in the context and answers,
|
| 141 |
+
which is most suitable to generate the best invites.
|
| 142 |
+
The goal is, you should draft best suitable prompt that can be sent to LLM for generating personalized invites
|
| 143 |
+
# based on the information available in context and answers. \n
|
| 144 |
+
|
| 145 |
+
f" STRICTLY provide NO preamble.\n"
|
| 146 |
+
#f"2. If the recipient's field does not match the product domain, generate a professional generic invite instead.\n"
|
| 147 |
+
#f"3. If the recipient is not working at any company[for ex: self employed] do consider this case while drafting the prompt
|
| 148 |
+
#and think on how to handle this case.
|
| 149 |
+
|
| 150 |
+
#The response should consist ONLY of the generated prompt as per these instructions.
|
| 151 |
+
"""
|
| 152 |
+
response = self.llm.invoke(prompt)
|
| 153 |
+
return response.content.strip()
|
| 154 |
+
|
| 155 |
+
def generate_response(self, user_prompt, data):
|
| 156 |
+
"""Generate a concise response using the LLM based on user prompt and data."""
|
| 157 |
+
|
| 158 |
+
prompt = (
|
| 159 |
+
f"You are a professional AI model tasked with writing personalized invite texts that are brochure-suitable "
|
| 160 |
+
f"and tailored to the user's request and recipient details.\n\n"
|
| 161 |
+
f"User Prompt: {user_prompt}\n"
|
| 162 |
+
f"Recipient Details: {data}\n\n"
|
| 163 |
+
f"**Instructions:**\n"
|
| 164 |
+
f"1. Start the response with an appropriate salutation, such as 'Hello {data['Name']}' if available.\n"
|
| 165 |
+
f"2. Match the tone specified in the user prompt. If no tone is mentioned, use a formal tone.\n"
|
| 166 |
+
f"3. Write the invite within 90-100 words unless a specific length is provided.\n"
|
| 167 |
+
f"4. Strictly adhere to all instructions and details given in the user prompt.\n\n"
|
| 168 |
+
f"**Additional Guidelines:**\n"
|
| 169 |
+
f"1. Tailor the invite to align with the recipient’s context and profession. For example:\n"
|
| 170 |
+
f" - If the recipient's information is unrelated to the context, provide a general formal invite highlighting key features.\n"
|
| 171 |
+
f" - If the recipient is closely related to the context (e.g., a GENAI engineer for an AI product), highlight specific benefits relevant to their needs.\n"
|
| 172 |
+
f"2. Seamlessly incorporate recipient-specific details (e.g., Job Title, Industry) mentioned in user prompt only if they fit naturally into the invite.\n"
|
| 173 |
+
f"3. Do not forcefully match the applications of the user product with the recipients information. \n"
|
| 174 |
+
f"3. Avoid preambles, unnecessary symbols, or extraneous text.\n"
|
| 175 |
+
f"4. Return the final invite text cleanly, in concise with no demeaning language.\n\n"
|
| 176 |
+
f"**Goal:** Generate personalized invites suitable for a wide range of recipients while aligning with the product or service described in the user prompt."
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
prompt2 = (
|
| 180 |
+
f" You are a professional AI model tasked with writing personalized invite texts that are brochure-suitable "
|
| 181 |
+
f" and tailored as per the user prompt and details of the recipient.\n\n"
|
| 182 |
+
f"User Prompt: {user_prompt}\n\n"
|
| 183 |
+
f"Details of the Recipient: {data}\n\n"
|
| 184 |
+
f"Please follow the below instructions while drafting the Invite of the recipient:\n"
|
| 185 |
+
f"1. The response must start with appropriate salutations.\n"
|
| 186 |
+
f"2. Match the tone of the invite specified in the user prompt. If not mentioned, use a formal tone.\n"
|
| 187 |
+
f"3. If the user prompt does not specify the invite length, write the invite within 80-90 words.\n"
|
| 188 |
+
f"4. Make sure to **follow all the instructions** given in the user prompt. \n\n"
|
| 189 |
+
f"In addition, the invite generated SHOULD include the below points: \n"
|
| 190 |
+
f" 1. If the recipients information is not related to context of the user prompt, generate a professional formal invite with NO demeaning words.\n "
|
| 191 |
+
f" for example: If the context is about gpu device, the receiver is a farmer, then provide a generic response highlighting its features. \n"
|
| 192 |
+
f"but if the recipient is GENAI engineer, provide an invite highlighting on how it is suitable to their needs and ease their work. "
|
| 193 |
+
f" 2. Aptly fit the recipient-specific details (e.g., Job Title, Industry, Areas of Interest) as specified in the user prompt in the invite "
|
| 194 |
+
f"and make sure it is not forcefully added in the invite. \n"
|
| 195 |
+
f" 3. Avoid preambles, extraneous symbols, or unnecessary text.\n"
|
| 196 |
+
f" 4. Return only the final invite text in clean, concise language.\n\n"
|
| 197 |
+
|
| 198 |
+
f"The goal is to generate personalized invites to wide range of receivers in terms of work domain, while matching it with the product/service "
|
| 199 |
+
f"provided by the user, make sure the invites are fulfilling this goal. "
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
)
|
| 205 |
+
# prompt = (
|
| 206 |
+
# f"You are a professional AI model tasked with writing personalized invite texts that are brochure-suitable "
|
| 207 |
+
# f"and tailored to the user's request.\n\n"
|
| 208 |
+
# f"User Prompt: {user_prompt}\n\n"
|
| 209 |
+
# f"Details of the Recipient: {data}\n\n"
|
| 210 |
+
#f"Please follow the below instructions while drafting the Invite of the recipient:\n"
|
| 211 |
+
# f"1. The response must start with appropriate salutations.\n"
|
| 212 |
+
# f"2. Match the tone of the invite specified in the user prompt. If not mentioned, use a formal tone.\n"
|
| 213 |
+
# f"3. Incorporate recipient-specific details (e.g., Job Title, Industry, Areas of Interest) as specified in the user prompt. If not mentioned, "
|
| 214 |
+
# f"use the provided recipient details.\n"
|
| 215 |
+
# f"4. Adjust the technical depth based on the recipient's expertise level.\n"
|
| 216 |
+
# f"5. If the recipient's details does not match the product domain, generate a professional generic invite instead.\n"
|
| 217 |
+
# f"6. If the user prompt does not specify the invite length, write the invite within 50-60 words.\n\n"
|
| 218 |
+
# f"Constraints:\n"
|
| 219 |
+
# f"- Strictly adhere to all details mentioned in the user prompt.\n"
|
| 220 |
+
# f"- Avoid preambles, extraneous symbols, or unnecessary text.\n"
|
| 221 |
+
# f"- Return only the final invite text in clean, concise language."
|
| 222 |
+
#)
|
| 223 |
+
|
| 224 |
+
response = self.llm.invoke(prompt)
|
| 225 |
+
return response.content.strip()
|