Spaces:
Runtime error
Runtime error
new app.py
Browse files
app.py
CHANGED
|
@@ -28,21 +28,20 @@ if not logger.handlers:
|
|
| 28 |
handler = logging.StreamHandler()
|
| 29 |
handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(name)s: %(message)s"))
|
| 30 |
logger.addHandler(handler)
|
| 31 |
-
logger.warning("here")
|
| 32 |
|
| 33 |
# Define repository and local directory
|
| 34 |
repo_id = "microsoft/OmniParser-v2.0" # HF repo
|
| 35 |
local_dir = "weights" # Target local directory
|
|
|
|
|
|
|
| 36 |
|
| 37 |
som_generator = MarkHelper()
|
| 38 |
magma_som_prompt = "<image>\nIn this view I need to click a button to \"{}\"? Provide the coordinates and the mark index of the containing bounding box if applicable."
|
| 39 |
magma_qa_prompt = "<image>\n{} Answer the question briefly."
|
| 40 |
magma_model_id = "microsoft/Magma-8B"
|
| 41 |
-
magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_code=True, torch_dtype=
|
| 42 |
-
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True
|
| 43 |
-
magam_model.to(
|
| 44 |
-
|
| 45 |
-
logger.warning(f"The repository is downloading to: {local_dir}")
|
| 46 |
|
| 47 |
# Download the entire repository
|
| 48 |
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
|
@@ -58,27 +57,14 @@ MARKDOWN = """
|
|
| 58 |
<div align="center">
|
| 59 |
<h2>Magma: A Foundation Model for Multimodal AI Agents</h2>
|
| 60 |
|
| 61 |
-
[Jianwei Yang](https://jwyang.github.io/)<sup>*</sup><sup>1</sup><sup>β </sup>
|
| 62 |
-
[Reuben Tan](https://cs-people.bu.edu/rxtan/)<sup>1</sup><sup>β </sup>
|
| 63 |
-
[Qianhui Wu](https://qianhuiwu.github.io/)<sup>1</sup><sup>β </sup>
|
| 64 |
-
[Ruijie Zheng](https://ruijiezheng.com/)<sup>2</sup><sup>β‘</sup>
|
| 65 |
-
[Baolin Peng](https://scholar.google.com/citations?user=u1CNjgwAAAAJ&hl=en&oi=ao)<sup>1</sup><sup>β‘</sup>
|
| 66 |
-
[Yongyuan Liang](https://cheryyunl.github.io)<sup>2</sup><sup>β‘</sup>
|
| 67 |
-
[Yu Gu](https://users.umiacs.umd.edu/~hal/)<sup>1</sup>
|
| 68 |
-
[Mu Cai](https://pages.cs.wisc.edu/~mucai/)<sup>3</sup>
|
| 69 |
-
[Seonghyeon Ye](https://seonghyeonye.github.io/)<sup>4</sup>
|
| 70 |
-
[Joel Jang](https://joeljang.github.io/)<sup>5</sup>
|
| 71 |
-
[Yuquan Deng](https://scholar.google.com/citations?user=LTC0Q6YAAAAJ&hl=en)<sup>5</sup>
|
| 72 |
-
[Lars Liden](https://sites.google.com/site/larsliden)<sup>1</sup>
|
| 73 |
-
[Jianfeng Gao](https://www.microsoft.com/en-us/research/people/jfgao/)<sup>1</sup><sup>β½</sup>
|
| 74 |
-
|
| 75 |
-
<sup>1</sup> Microsoft Research; <sup>2</sup> University of Maryland; <sup>3</sup> University of Wisconsin-Madison; <sup>4</sup> KAIST; <sup>5</sup> University of Washington
|
| 76 |
-
|
| 77 |
-
<sup>*</sup> Project lead <sup>β </sup> First authors <sup>β‘</sup> Second authors <sup>β½</sup> Leadership
|
| 78 |
-
|
| 79 |
\[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] \[[Project Page](https://microsoft.github.io/Magma/)\] \[[Github Repo](https://github.com/microsoft/Magma)\] \[[Hugging Face Model](https://huggingface.co/microsoft/Magma-8B)\]
|
| 80 |
|
| 81 |
-
This demo is powered by [Gradio](https://gradio.app/) and uses OmniParserv2 to generate Set-of-Mark prompts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
</div>
|
| 83 |
"""
|
| 84 |
|
|
@@ -86,7 +72,6 @@ DEVICE = torch.device('cuda')
|
|
| 86 |
|
| 87 |
@spaces.GPU
|
| 88 |
@torch.inference_mode()
|
| 89 |
-
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 90 |
def get_som_response(instruction, image_som):
|
| 91 |
prompt = magma_som_prompt.format(instruction)
|
| 92 |
if magam_model.config.mm_use_image_start_end:
|
|
@@ -101,23 +86,10 @@ def get_som_response(instruction, image_som):
|
|
| 101 |
add_generation_prompt=True
|
| 102 |
)
|
| 103 |
|
| 104 |
-
# inputs = magma_processor(images=[image_som], texts=prompt, return_tensors="pt")
|
| 105 |
-
# # with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
| 106 |
-
# # inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0).to(torch.bfloat16) # Add .to(torch.bfloat16) here for explicit casting
|
| 107 |
-
# # inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
| 108 |
-
# # logger.warning(inputs['pixel_values'].dtype)
|
| 109 |
-
# # # inputs = inputs.to("cuda")
|
| 110 |
-
# inputs = inputs.to("cuda", dtype=torch.bfloat16)
|
| 111 |
-
|
| 112 |
inputs = magma_processor(images=[image_som], texts=prompt, return_tensors="pt")
|
| 113 |
-
inputs['pixel_values'] = inputs['pixel_values'].
|
| 114 |
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
| 115 |
-
inputs
|
| 116 |
-
|
| 117 |
-
# ε€ηε
Άδ»ε―θ½ηθΎε
₯
|
| 118 |
-
for key in inputs:
|
| 119 |
-
if key not in ['pixel_values', 'image_sizes'] and torch.is_tensor(inputs[key]):
|
| 120 |
-
inputs[key] = inputs[key].to("cuda")
|
| 121 |
|
| 122 |
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
| 123 |
with torch.inference_mode():
|
|
@@ -137,7 +109,6 @@ def get_som_response(instruction, image_som):
|
|
| 137 |
|
| 138 |
@spaces.GPU
|
| 139 |
@torch.inference_mode()
|
| 140 |
-
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 141 |
def get_qa_response(instruction, image):
|
| 142 |
prompt = magma_qa_prompt.format(instruction)
|
| 143 |
if magam_model.config.mm_use_image_start_end:
|
|
@@ -152,12 +123,10 @@ def get_qa_response(instruction, image):
|
|
| 152 |
add_generation_prompt=True
|
| 153 |
)
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
# inputs = inputs.to("cuda")
|
| 160 |
-
inputs = inputs.to("cuda", dtype=torch.bfloat16)
|
| 161 |
|
| 162 |
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
| 163 |
with torch.inference_mode():
|
|
@@ -177,7 +146,7 @@ def get_qa_response(instruction, image):
|
|
| 177 |
|
| 178 |
@spaces.GPU
|
| 179 |
@torch.inference_mode()
|
| 180 |
-
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 181 |
def process(
|
| 182 |
image_input,
|
| 183 |
box_threshold,
|
|
@@ -187,107 +156,99 @@ def process(
|
|
| 187 |
instruction,
|
| 188 |
) -> Optional[Image.Image]:
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
mark_id
|
| 239 |
-
|
| 240 |
-
if str(mark_id) in label_coordinates:
|
| 241 |
-
bbox_for_mark = label_coordinates[str(mark_id)]
|
| 242 |
-
else:
|
| 243 |
-
bbox_for_mark = None
|
| 244 |
else:
|
| 245 |
bbox_for_mark = None
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
image_input,
|
| 251 |
-
[
|
| 252 |
-
som_generator,
|
| 253 |
edgecolor=(255,127,111),
|
| 254 |
-
|
| 255 |
-
fn_save=None,
|
| 256 |
normalized_to_pixel=False,
|
| 257 |
add_mark=False
|
| 258 |
)
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
click_point = [item / 1000 for item in click_point]
|
| 265 |
-
else:
|
| 266 |
-
click_point = pred_2_point(magma_response)
|
| 267 |
-
# de-normalize click_point (width, height)
|
| 268 |
-
click_point = [click_point[0] * image_input.size[0], click_point[1] * image_input.size[1]]
|
| 269 |
-
|
| 270 |
-
image_som = plot_circles_with_marks(
|
| 271 |
-
image_input,
|
| 272 |
-
[click_point],
|
| 273 |
-
som_generator,
|
| 274 |
-
edgecolor=(255,127,111),
|
| 275 |
-
linewidth=3,
|
| 276 |
-
fn_save=None,
|
| 277 |
-
normalized_to_pixel=False,
|
| 278 |
-
add_mark=False
|
| 279 |
-
)
|
| 280 |
-
except:
|
| 281 |
-
image_som = image_input
|
| 282 |
-
|
| 283 |
-
logger.warning("finish processing")
|
| 284 |
-
return image_som, str(parsed_content_list)
|
| 285 |
-
except Exception as e:
|
| 286 |
-
error_message = traceback.format_exc()
|
| 287 |
-
logger.warning(error_message)
|
| 288 |
-
return image_input, error_message
|
| 289 |
-
|
| 290 |
-
logger.warning("Starting App.")
|
| 291 |
with gr.Blocks() as demo:
|
| 292 |
gr.Markdown(MARKDOWN)
|
| 293 |
with gr.Row():
|
|
@@ -326,6 +287,6 @@ with gr.Blocks() as demo:
|
|
| 326 |
outputs=[image_output_component, text_output_component]
|
| 327 |
)
|
| 328 |
|
| 329 |
-
# demo.launch(debug=
|
| 330 |
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
| 331 |
-
demo.queue().launch(share=False)
|
|
|
|
| 28 |
handler = logging.StreamHandler()
|
| 29 |
handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(name)s: %(message)s"))
|
| 30 |
logger.addHandler(handler)
|
|
|
|
| 31 |
|
| 32 |
# Define repository and local directory
|
| 33 |
repo_id = "microsoft/OmniParser-v2.0" # HF repo
|
| 34 |
local_dir = "weights" # Target local directory
|
| 35 |
+
dtype = torch.bfloat16
|
| 36 |
+
DEVICE = torch.device('cuda')
|
| 37 |
|
| 38 |
som_generator = MarkHelper()
|
| 39 |
magma_som_prompt = "<image>\nIn this view I need to click a button to \"{}\"? Provide the coordinates and the mark index of the containing bounding box if applicable."
|
| 40 |
magma_qa_prompt = "<image>\n{} Answer the question briefly."
|
| 41 |
magma_model_id = "microsoft/Magma-8B"
|
| 42 |
+
magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_code=True, torch_dtype=dtype)
|
| 43 |
+
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True)
|
| 44 |
+
magam_model.to(DEVICE)
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Download the entire repository
|
| 47 |
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
|
|
|
| 57 |
<div align="center">
|
| 58 |
<h2>Magma: A Foundation Model for Multimodal AI Agents</h2>
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
\[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] \[[Project Page](https://microsoft.github.io/Magma/)\] \[[Github Repo](https://github.com/microsoft/Magma)\] \[[Hugging Face Model](https://huggingface.co/microsoft/Magma-8B)\]
|
| 61 |
|
| 62 |
+
This demo is powered by [Gradio](https://gradio.app/) and uses [OmniParserv2](https://github.com/microsoft/OmniParser) to generate [Set-of-Mark prompts](https://github.com/microsoft/SoM).
|
| 63 |
+
|
| 64 |
+
The demo supports three modes:
|
| 65 |
+
1. Empty text inut: it downgrades to an OmniParser demo.
|
| 66 |
+
2. Text input starting with "Q:": it leads to a visual question answering demo.
|
| 67 |
+
3. Text input for UI navigation: it leads to a UI navigation demo.
|
| 68 |
</div>
|
| 69 |
"""
|
| 70 |
|
|
|
|
| 72 |
|
| 73 |
@spaces.GPU
|
| 74 |
@torch.inference_mode()
|
|
|
|
| 75 |
def get_som_response(instruction, image_som):
|
| 76 |
prompt = magma_som_prompt.format(instruction)
|
| 77 |
if magam_model.config.mm_use_image_start_end:
|
|
|
|
| 86 |
add_generation_prompt=True
|
| 87 |
)
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
inputs = magma_processor(images=[image_som], texts=prompt, return_tensors="pt")
|
| 90 |
+
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
|
| 91 |
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
| 92 |
+
inputs = inputs.to(dtype).to(DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
| 95 |
with torch.inference_mode():
|
|
|
|
| 109 |
|
| 110 |
@spaces.GPU
|
| 111 |
@torch.inference_mode()
|
|
|
|
| 112 |
def get_qa_response(instruction, image):
|
| 113 |
prompt = magma_qa_prompt.format(instruction)
|
| 114 |
if magam_model.config.mm_use_image_start_end:
|
|
|
|
| 123 |
add_generation_prompt=True
|
| 124 |
)
|
| 125 |
|
| 126 |
+
inputs = magma_processor(images=[image], texts=prompt, return_tensors="pt")
|
| 127 |
+
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
|
| 128 |
+
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
| 129 |
+
inputs = inputs.to(dtype).to(DEVICE)
|
|
|
|
|
|
|
| 130 |
|
| 131 |
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
| 132 |
with torch.inference_mode():
|
|
|
|
| 146 |
|
| 147 |
@spaces.GPU
|
| 148 |
@torch.inference_mode()
|
| 149 |
+
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 150 |
def process(
|
| 151 |
image_input,
|
| 152 |
box_threshold,
|
|
|
|
| 156 |
instruction,
|
| 157 |
) -> Optional[Image.Image]:
|
| 158 |
|
| 159 |
+
# image_save_path = 'imgs/saved_image_demo.png'
|
| 160 |
+
# image_input.save(image_save_path)
|
| 161 |
+
# image = Image.open(image_save_path)
|
| 162 |
+
box_overlay_ratio = image_input.size[0] / 3200
|
| 163 |
+
draw_bbox_config = {
|
| 164 |
+
'text_scale': 0.8 * box_overlay_ratio,
|
| 165 |
+
'text_thickness': max(int(2 * box_overlay_ratio), 1),
|
| 166 |
+
'text_padding': max(int(3 * box_overlay_ratio), 1),
|
| 167 |
+
'thickness': max(int(3 * box_overlay_ratio), 1),
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_input, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
|
| 171 |
+
text, ocr_bbox = ocr_bbox_rslt
|
| 172 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_input, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz,)
|
| 173 |
+
parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
|
| 174 |
+
|
| 175 |
+
if len(instruction) == 0:
|
| 176 |
+
logger.warning('finish processing')
|
| 177 |
+
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
| 178 |
+
return image, str(parsed_content_list)
|
| 179 |
+
|
| 180 |
+
elif instruction.startswith('Q:'):
|
| 181 |
+
response = get_qa_response(instruction, image_input)
|
| 182 |
+
return image_input, response
|
| 183 |
+
|
| 184 |
+
# parsed_content_list = str(parsed_content_list)
|
| 185 |
+
# convert xywh to yxhw
|
| 186 |
+
label_coordinates_yxhw = {}
|
| 187 |
+
for key, val in label_coordinates.items():
|
| 188 |
+
if val[2] < 0 or val[3] < 0:
|
| 189 |
+
continue
|
| 190 |
+
label_coordinates_yxhw[key] = [val[1], val[0], val[3], val[2]]
|
| 191 |
+
image_som = plot_boxes_with_marks(image_input.copy(), [val for key, val in label_coordinates_yxhw.items()], som_generator, edgecolor=(255,0,0), fn_save=None, normalized_to_pixel=False)
|
| 192 |
+
|
| 193 |
+
# convert xywh to xyxy
|
| 194 |
+
for key, val in label_coordinates.items():
|
| 195 |
+
label_coordinates[key] = [val[0], val[1], val[0] + val[2], val[1] + val[3]]
|
| 196 |
+
|
| 197 |
+
# normalize label_coordinates
|
| 198 |
+
for key, val in label_coordinates.items():
|
| 199 |
+
label_coordinates[key] = [val[0] / image_input.size[0], val[1] / image_input.size[1], val[2] / image_input.size[0], val[3] / image_input.size[1]]
|
| 200 |
+
|
| 201 |
+
magma_response = get_som_response(instruction, image_som)
|
| 202 |
+
logger.warning("magma repsonse: ", magma_response)
|
| 203 |
+
|
| 204 |
+
# map magma_response into the mark id
|
| 205 |
+
mark_id = extract_mark_id(magma_response)
|
| 206 |
+
if mark_id is not None:
|
| 207 |
+
if str(mark_id) in label_coordinates:
|
| 208 |
+
bbox_for_mark = label_coordinates[str(mark_id)]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
else:
|
| 210 |
bbox_for_mark = None
|
| 211 |
+
else:
|
| 212 |
+
bbox_for_mark = None
|
| 213 |
+
|
| 214 |
+
if bbox_for_mark:
|
| 215 |
+
# draw bbox_for_mark on the image
|
| 216 |
+
image_som = plot_boxes_with_marks(
|
| 217 |
+
image_input,
|
| 218 |
+
[label_coordinates_yxhw[str(mark_id)]],
|
| 219 |
+
som_generator,
|
| 220 |
+
edgecolor=(255,127,111),
|
| 221 |
+
alpha=30,
|
| 222 |
+
fn_save=None,
|
| 223 |
+
normalized_to_pixel=False,
|
| 224 |
+
add_mark=False
|
| 225 |
+
)
|
| 226 |
+
else:
|
| 227 |
+
try:
|
| 228 |
+
if 'box' in magma_response:
|
| 229 |
+
pred_bbox = extract_bbox(magma_response)
|
| 230 |
+
click_point = [(pred_bbox[0][0] + pred_bbox[1][0]) / 2, (pred_bbox[0][1] + pred_bbox[1][1]) / 2]
|
| 231 |
+
click_point = [item / 1000 for item in click_point]
|
| 232 |
+
else:
|
| 233 |
+
click_point = pred_2_point(magma_response)
|
| 234 |
+
# de-normalize click_point (width, height)
|
| 235 |
+
click_point = [click_point[0] * image_input.size[0], click_point[1] * image_input.size[1]]
|
| 236 |
+
|
| 237 |
+
image_som = plot_circles_with_marks(
|
| 238 |
image_input,
|
| 239 |
+
[click_point],
|
| 240 |
+
som_generator,
|
| 241 |
edgecolor=(255,127,111),
|
| 242 |
+
linewidth=3,
|
| 243 |
+
fn_save=None,
|
| 244 |
normalized_to_pixel=False,
|
| 245 |
add_mark=False
|
| 246 |
)
|
| 247 |
+
except:
|
| 248 |
+
image_som = image_input
|
| 249 |
+
|
| 250 |
+
return image_som, str(parsed_content_list)
|
| 251 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
with gr.Blocks() as demo:
|
| 253 |
gr.Markdown(MARKDOWN)
|
| 254 |
with gr.Row():
|
|
|
|
| 287 |
outputs=[image_output_component, text_output_component]
|
| 288 |
)
|
| 289 |
|
| 290 |
+
# demo.launch(debug=False, show_error=True, share=True)
|
| 291 |
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
| 292 |
+
demo.queue().launch(share=False)
|