Spaces:
Runtime error
Runtime error
just test
Browse files
app.py
CHANGED
|
@@ -3,54 +3,18 @@ import logging
|
|
| 3 |
from typing import Optional
|
| 4 |
import spaces
|
| 5 |
import gradio as gr
|
| 6 |
-
import numpy as np
|
| 7 |
-
import torch
|
| 8 |
-
from PIL import Image
|
| 9 |
-
import io
|
| 10 |
-
import re
|
| 11 |
-
|
| 12 |
-
import base64, os
|
| 13 |
-
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
|
| 14 |
-
from util.som import MarkHelper, plot_boxes_with_marks, plot_circles_with_marks
|
| 15 |
-
from util.process_utils import pred_2_point, extract_bbox, extract_mark_id
|
| 16 |
-
|
| 17 |
-
import torch
|
| 18 |
-
from PIL import Image
|
| 19 |
-
|
| 20 |
-
from huggingface_hub import snapshot_download
|
| 21 |
-
import torch
|
| 22 |
-
from transformers import AutoModelForCausalLM
|
| 23 |
-
from transformers import AutoProcessor
|
| 24 |
|
| 25 |
logger = logging.getLogger(__name__)
|
| 26 |
logger.setLevel(logging.WARNING)
|
| 27 |
handler = logging.StreamHandler()
|
| 28 |
logger.addHandler(handler)
|
| 29 |
|
| 30 |
-
# Define repository and local directory
|
| 31 |
-
repo_id = "microsoft/OmniParser-v2.0" # HF repo
|
| 32 |
-
local_dir = "weights" # Target local directory
|
| 33 |
-
|
| 34 |
-
som_generator = MarkHelper()
|
| 35 |
-
magma_som_prompt = "<image>\nIn this view I need to click a button to \"{}\"? Provide the coordinates and the mark index of the containing bounding box if applicable."
|
| 36 |
-
magma_qa_prompt = "<image>\n{} Answer the question briefly."
|
| 37 |
-
magma_model_id = "microsoft/Magma-8B"
|
| 38 |
-
magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_code=True)
|
| 39 |
-
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True)
|
| 40 |
-
magam_model.to("cuda")
|
| 41 |
|
| 42 |
logger.warning(f"The repository is downloading to: {local_dir}")
|
| 43 |
|
| 44 |
-
# Download the entire repository
|
| 45 |
-
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
| 46 |
-
|
| 47 |
logger.warning(f"Repository downloaded to: {local_dir}")
|
| 48 |
|
| 49 |
|
| 50 |
-
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
|
| 51 |
-
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption")
|
| 52 |
-
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
|
| 53 |
-
|
| 54 |
MARKDOWN = """
|
| 55 |
<div align="center">
|
| 56 |
<h2>Magma: A Foundation Model for Multimodal AI Agents</h2>
|
|
@@ -79,238 +43,10 @@ This demo is powered by [Gradio](https://gradio.app/) and uses OmniParserv2 to g
|
|
| 79 |
</div>
|
| 80 |
"""
|
| 81 |
|
| 82 |
-
DEVICE = torch.device('cuda')
|
| 83 |
-
|
| 84 |
-
@spaces.GPU
|
| 85 |
-
@torch.inference_mode()
|
| 86 |
-
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 87 |
-
def get_som_response(instruction, image_som):
|
| 88 |
-
prompt = magma_som_prompt.format(instruction)
|
| 89 |
-
if magam_model.config.mm_use_image_start_end:
|
| 90 |
-
qs = prompt.replace('<image>', '<image_start><image><image_end>')
|
| 91 |
-
else:
|
| 92 |
-
qs = prompt
|
| 93 |
-
convs = [{"role": "user", "content": qs}]
|
| 94 |
-
convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs
|
| 95 |
-
prompt = magma_processor.tokenizer.apply_chat_template(
|
| 96 |
-
convs,
|
| 97 |
-
tokenize=False,
|
| 98 |
-
add_generation_prompt=True
|
| 99 |
-
)
|
| 100 |
-
|
| 101 |
-
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
| 102 |
-
inputs = magma_processor(images=[image_som], texts=prompt, return_tensors="pt")
|
| 103 |
-
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0).to(torch.bfloat16) # Add .to(torch.bfloat16) here for explicit casting
|
| 104 |
-
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
| 105 |
-
# inputs = inputs.to("cuda")
|
| 106 |
-
inputs = inputs.to("cuda", dtype=torch.bfloat16)
|
| 107 |
-
|
| 108 |
-
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
| 109 |
-
with torch.inference_mode():
|
| 110 |
-
output_ids = magam_model.generate(
|
| 111 |
-
**inputs,
|
| 112 |
-
temperature=0.0,
|
| 113 |
-
do_sample=False,
|
| 114 |
-
num_beams=1,
|
| 115 |
-
max_new_tokens=128,
|
| 116 |
-
use_cache=True
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
|
| 120 |
-
response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 121 |
-
response = response.replace(prompt_decoded, '').strip()
|
| 122 |
-
return response
|
| 123 |
-
|
| 124 |
-
@spaces.GPU
|
| 125 |
-
@torch.inference_mode()
|
| 126 |
-
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 127 |
-
def get_qa_response(instruction, image):
|
| 128 |
-
prompt = magma_qa_prompt.format(instruction)
|
| 129 |
-
if magam_model.config.mm_use_image_start_end:
|
| 130 |
-
qs = prompt.replace('<image>', '<image_start><image><image_end>')
|
| 131 |
-
else:
|
| 132 |
-
qs = prompt
|
| 133 |
-
convs = [{"role": "user", "content": qs}]
|
| 134 |
-
convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs
|
| 135 |
-
prompt = magma_processor.tokenizer.apply_chat_template(
|
| 136 |
-
convs,
|
| 137 |
-
tokenize=False,
|
| 138 |
-
add_generation_prompt=True
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
| 142 |
-
inputs = magma_processor(images=[image], texts=prompt, return_tensors="pt")
|
| 143 |
-
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0).to(torch.bfloat16) # Add .to(torch.bfloat16) here for explicit casting
|
| 144 |
-
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
| 145 |
-
# inputs = inputs.to("cuda")
|
| 146 |
-
inputs = inputs.to("cuda", dtype=torch.bfloat16)
|
| 147 |
-
|
| 148 |
-
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
| 149 |
-
with torch.inference_mode():
|
| 150 |
-
output_ids = magam_model.generate(
|
| 151 |
-
**inputs,
|
| 152 |
-
temperature=0.0,
|
| 153 |
-
do_sample=False,
|
| 154 |
-
num_beams=1,
|
| 155 |
-
max_new_tokens=128,
|
| 156 |
-
use_cache=True
|
| 157 |
-
)
|
| 158 |
-
|
| 159 |
-
prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
|
| 160 |
-
response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 161 |
-
response = response.replace(prompt_decoded, '').strip()
|
| 162 |
-
return response
|
| 163 |
-
|
| 164 |
-
@spaces.GPU
|
| 165 |
-
@torch.inference_mode()
|
| 166 |
-
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 167 |
-
def process(
|
| 168 |
-
image_input,
|
| 169 |
-
box_threshold,
|
| 170 |
-
iou_threshold,
|
| 171 |
-
use_paddleocr,
|
| 172 |
-
imgsz,
|
| 173 |
-
instruction,
|
| 174 |
-
) -> Optional[Image.Image]:
|
| 175 |
-
|
| 176 |
-
logger.warning("Starting processing.")
|
| 177 |
-
try:
|
| 178 |
-
# image_save_path = 'imgs/saved_image_demo.png'
|
| 179 |
-
# image_input.save(image_save_path)
|
| 180 |
-
# image = Image.open(image_save_path)
|
| 181 |
-
box_overlay_ratio = image_input.size[0] / 3200
|
| 182 |
-
draw_bbox_config = {
|
| 183 |
-
'text_scale': 0.8 * box_overlay_ratio,
|
| 184 |
-
'text_thickness': max(int(2 * box_overlay_ratio), 1),
|
| 185 |
-
'text_padding': max(int(3 * box_overlay_ratio), 1),
|
| 186 |
-
'thickness': max(int(3 * box_overlay_ratio), 1),
|
| 187 |
-
}
|
| 188 |
-
|
| 189 |
-
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_input, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
|
| 190 |
-
text, ocr_bbox = ocr_bbox_rslt
|
| 191 |
-
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_input, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz,)
|
| 192 |
-
parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
|
| 193 |
-
|
| 194 |
-
if len(instruction) == 0:
|
| 195 |
-
logger.warning('finish processing')
|
| 196 |
-
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
| 197 |
-
return image, str(parsed_content_list)
|
| 198 |
-
|
| 199 |
-
elif instruction.startswith('Q:'):
|
| 200 |
-
response = get_qa_response(instruction, image_input)
|
| 201 |
-
return image_input, response
|
| 202 |
-
|
| 203 |
-
# parsed_content_list = str(parsed_content_list)
|
| 204 |
-
# convert xywh to yxhw
|
| 205 |
-
label_coordinates_yxhw = {}
|
| 206 |
-
for key, val in label_coordinates.items():
|
| 207 |
-
if val[2] < 0 or val[3] < 0:
|
| 208 |
-
continue
|
| 209 |
-
label_coordinates_yxhw[key] = [val[1], val[0], val[3], val[2]]
|
| 210 |
-
image_som = plot_boxes_with_marks(image_input.copy(), [val for key, val in label_coordinates_yxhw.items()], som_generator, edgecolor=(255,0,0), fn_save=None, normalized_to_pixel=False)
|
| 211 |
-
|
| 212 |
-
# convert xywh to xyxy
|
| 213 |
-
for key, val in label_coordinates.items():
|
| 214 |
-
label_coordinates[key] = [val[0], val[1], val[0] + val[2], val[1] + val[3]]
|
| 215 |
-
|
| 216 |
-
# normalize label_coordinates
|
| 217 |
-
for key, val in label_coordinates.items():
|
| 218 |
-
label_coordinates[key] = [val[0] / image_input.size[0], val[1] / image_input.size[1], val[2] / image_input.size[0], val[3] / image_input.size[1]]
|
| 219 |
-
|
| 220 |
-
magma_response = get_som_response(instruction, image_som)
|
| 221 |
-
logger.warning("magma repsonse: ", magma_response)
|
| 222 |
-
|
| 223 |
-
# map magma_response into the mark id
|
| 224 |
-
mark_id = extract_mark_id(magma_response)
|
| 225 |
-
if mark_id is not None:
|
| 226 |
-
if str(mark_id) in label_coordinates:
|
| 227 |
-
bbox_for_mark = label_coordinates[str(mark_id)]
|
| 228 |
-
else:
|
| 229 |
-
bbox_for_mark = None
|
| 230 |
-
else:
|
| 231 |
-
bbox_for_mark = None
|
| 232 |
-
|
| 233 |
-
if bbox_for_mark:
|
| 234 |
-
# draw bbox_for_mark on the image
|
| 235 |
-
image_som = plot_boxes_with_marks(
|
| 236 |
-
image_input,
|
| 237 |
-
[label_coordinates_yxhw[str(mark_id)]],
|
| 238 |
-
som_generator,
|
| 239 |
-
edgecolor=(255,127,111),
|
| 240 |
-
alpha=30,
|
| 241 |
-
fn_save=None,
|
| 242 |
-
normalized_to_pixel=False,
|
| 243 |
-
add_mark=False
|
| 244 |
-
)
|
| 245 |
-
else:
|
| 246 |
-
try:
|
| 247 |
-
if 'box' in magma_response:
|
| 248 |
-
pred_bbox = extract_bbox(magma_response)
|
| 249 |
-
click_point = [(pred_bbox[0][0] + pred_bbox[1][0]) / 2, (pred_bbox[0][1] + pred_bbox[1][1]) / 2]
|
| 250 |
-
click_point = [item / 1000 for item in click_point]
|
| 251 |
-
else:
|
| 252 |
-
click_point = pred_2_point(magma_response)
|
| 253 |
-
# de-normalize click_point (width, height)
|
| 254 |
-
click_point = [click_point[0] * image_input.size[0], click_point[1] * image_input.size[1]]
|
| 255 |
-
|
| 256 |
-
image_som = plot_circles_with_marks(
|
| 257 |
-
image_input,
|
| 258 |
-
[click_point],
|
| 259 |
-
som_generator,
|
| 260 |
-
edgecolor=(255,127,111),
|
| 261 |
-
linewidth=3,
|
| 262 |
-
fn_save=None,
|
| 263 |
-
normalized_to_pixel=False,
|
| 264 |
-
add_mark=False
|
| 265 |
-
)
|
| 266 |
-
except:
|
| 267 |
-
image_som = image_input
|
| 268 |
-
|
| 269 |
-
logger.warning("finish processing")
|
| 270 |
-
return image_som, str(parsed_content_list)
|
| 271 |
-
except Exception as e:
|
| 272 |
-
error_message = traceback.format_exc()
|
| 273 |
-
logger.warning(error_message)
|
| 274 |
-
return image_input, error_message
|
| 275 |
-
|
| 276 |
logger.warning("Starting App.")
|
|
|
|
| 277 |
with gr.Blocks() as demo:
|
| 278 |
gr.Markdown(MARKDOWN)
|
| 279 |
-
with gr.Row():
|
| 280 |
-
with gr.Column():
|
| 281 |
-
image_input_component = gr.Image(
|
| 282 |
-
type='pil', label='Upload image')
|
| 283 |
-
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
|
| 284 |
-
with gr.Accordion("Parameters", open=False) as parameter_row:
|
| 285 |
-
box_threshold_component = gr.Slider(
|
| 286 |
-
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
|
| 287 |
-
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
|
| 288 |
-
iou_threshold_component = gr.Slider(
|
| 289 |
-
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
|
| 290 |
-
use_paddleocr_component = gr.Checkbox(
|
| 291 |
-
label='Use PaddleOCR', value=True)
|
| 292 |
-
imgsz_component = gr.Slider(
|
| 293 |
-
label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640)
|
| 294 |
-
# text box
|
| 295 |
-
text_input_component = gr.Textbox(label='Text Input', placeholder='Text Input')
|
| 296 |
-
submit_button_component = gr.Button(
|
| 297 |
-
value='Submit', variant='primary')
|
| 298 |
-
with gr.Column():
|
| 299 |
-
image_output_component = gr.Image(type='pil', label='Image Output')
|
| 300 |
-
text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
|
| 301 |
-
|
| 302 |
-
submit_button_component.click(
|
| 303 |
-
fn=process,
|
| 304 |
-
inputs=[
|
| 305 |
-
image_input_component,
|
| 306 |
-
box_threshold_component,
|
| 307 |
-
iou_threshold_component,
|
| 308 |
-
use_paddleocr_component,
|
| 309 |
-
imgsz_component,
|
| 310 |
-
text_input_component
|
| 311 |
-
],
|
| 312 |
-
outputs=[image_output_component, text_output_component]
|
| 313 |
-
)
|
| 314 |
|
| 315 |
demo.launch(debug=True, show_error=True, share=True)
|
| 316 |
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
|
|
|
| 3 |
from typing import Optional
|
| 4 |
import spaces
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
logger = logging.getLogger(__name__)
|
| 8 |
logger.setLevel(logging.WARNING)
|
| 9 |
handler = logging.StreamHandler()
|
| 10 |
logger.addHandler(handler)
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
logger.warning(f"The repository is downloading to: {local_dir}")
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
logger.warning(f"Repository downloaded to: {local_dir}")
|
| 16 |
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
MARKDOWN = """
|
| 19 |
<div align="center">
|
| 20 |
<h2>Magma: A Foundation Model for Multimodal AI Agents</h2>
|
|
|
|
| 43 |
</div>
|
| 44 |
"""
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
logger.warning("Starting App.")
|
| 47 |
+
|
| 48 |
with gr.Blocks() as demo:
|
| 49 |
gr.Markdown(MARKDOWN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
demo.launch(debug=True, show_error=True, share=True)
|
| 52 |
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
app_1.py
ADDED
|
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import traceback
|
| 2 |
+
import logging
|
| 3 |
+
from typing import Optional
|
| 4 |
+
import spaces
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import io
|
| 10 |
+
import re
|
| 11 |
+
|
| 12 |
+
import base64, os
|
| 13 |
+
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
|
| 14 |
+
from util.som import MarkHelper, plot_boxes_with_marks, plot_circles_with_marks
|
| 15 |
+
from util.process_utils import pred_2_point, extract_bbox, extract_mark_id
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from PIL import Image
|
| 19 |
+
|
| 20 |
+
from huggingface_hub import snapshot_download
|
| 21 |
+
import torch
|
| 22 |
+
from transformers import AutoModelForCausalLM
|
| 23 |
+
from transformers import AutoProcessor
|
| 24 |
+
|
| 25 |
+
logger = logging.getLogger(__name__)
|
| 26 |
+
logger.setLevel(logging.WARNING)
|
| 27 |
+
handler = logging.StreamHandler()
|
| 28 |
+
logger.addHandler(handler)
|
| 29 |
+
|
| 30 |
+
# Define repository and local directory
|
| 31 |
+
repo_id = "microsoft/OmniParser-v2.0" # HF repo
|
| 32 |
+
local_dir = "weights" # Target local directory
|
| 33 |
+
|
| 34 |
+
som_generator = MarkHelper()
|
| 35 |
+
magma_som_prompt = "<image>\nIn this view I need to click a button to \"{}\"? Provide the coordinates and the mark index of the containing bounding box if applicable."
|
| 36 |
+
magma_qa_prompt = "<image>\n{} Answer the question briefly."
|
| 37 |
+
magma_model_id = "microsoft/Magma-8B"
|
| 38 |
+
magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_code=True)
|
| 39 |
+
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True)
|
| 40 |
+
magam_model.to("cuda")
|
| 41 |
+
|
| 42 |
+
logger.warning(f"The repository is downloading to: {local_dir}")
|
| 43 |
+
|
| 44 |
+
# Download the entire repository
|
| 45 |
+
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
| 46 |
+
|
| 47 |
+
logger.warning(f"Repository downloaded to: {local_dir}")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
|
| 51 |
+
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption")
|
| 52 |
+
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
|
| 53 |
+
|
| 54 |
+
MARKDOWN = """
|
| 55 |
+
<div align="center">
|
| 56 |
+
<h2>Magma: A Foundation Model for Multimodal AI Agents</h2>
|
| 57 |
+
|
| 58 |
+
[Jianwei Yang](https://jwyang.github.io/)<sup>*</sup><sup>1</sup><sup>β </sup>
|
| 59 |
+
[Reuben Tan](https://cs-people.bu.edu/rxtan/)<sup>1</sup><sup>β </sup>
|
| 60 |
+
[Qianhui Wu](https://qianhuiwu.github.io/)<sup>1</sup><sup>β </sup>
|
| 61 |
+
[Ruijie Zheng](https://ruijiezheng.com/)<sup>2</sup><sup>β‘</sup>
|
| 62 |
+
[Baolin Peng](https://scholar.google.com/citations?user=u1CNjgwAAAAJ&hl=en&oi=ao)<sup>1</sup><sup>β‘</sup>
|
| 63 |
+
[Yongyuan Liang](https://cheryyunl.github.io)<sup>2</sup><sup>β‘</sup>
|
| 64 |
+
[Yu Gu](https://users.umiacs.umd.edu/~hal/)<sup>1</sup>
|
| 65 |
+
[Mu Cai](https://pages.cs.wisc.edu/~mucai/)<sup>3</sup>
|
| 66 |
+
[Seonghyeon Ye](https://seonghyeonye.github.io/)<sup>4</sup>
|
| 67 |
+
[Joel Jang](https://joeljang.github.io/)<sup>5</sup>
|
| 68 |
+
[Yuquan Deng](https://scholar.google.com/citations?user=LTC0Q6YAAAAJ&hl=en)<sup>5</sup>
|
| 69 |
+
[Lars Liden](https://sites.google.com/site/larsliden)<sup>1</sup>
|
| 70 |
+
[Jianfeng Gao](https://www.microsoft.com/en-us/research/people/jfgao/)<sup>1</sup><sup>β½</sup>
|
| 71 |
+
|
| 72 |
+
<sup>1</sup> Microsoft Research; <sup>2</sup> University of Maryland; <sup>3</sup> University of Wisconsin-Madison; <sup>4</sup> KAIST; <sup>5</sup> University of Washington
|
| 73 |
+
|
| 74 |
+
<sup>*</sup> Project lead <sup>β </sup> First authors <sup>β‘</sup> Second authors <sup>β½</sup> Leadership
|
| 75 |
+
|
| 76 |
+
\[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] \[[Project Page](https://microsoft.github.io/Magma/)\] \[[Github Repo](https://github.com/microsoft/Magma)\] \[[Hugging Face Model](https://huggingface.co/microsoft/Magma-8B)\]
|
| 77 |
+
|
| 78 |
+
This demo is powered by [Gradio](https://gradio.app/) and uses OmniParserv2 to generate Set-of-Mark prompts.
|
| 79 |
+
</div>
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
DEVICE = torch.device('cuda')
|
| 83 |
+
|
| 84 |
+
@spaces.GPU
|
| 85 |
+
@torch.inference_mode()
|
| 86 |
+
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 87 |
+
def get_som_response(instruction, image_som):
|
| 88 |
+
prompt = magma_som_prompt.format(instruction)
|
| 89 |
+
if magam_model.config.mm_use_image_start_end:
|
| 90 |
+
qs = prompt.replace('<image>', '<image_start><image><image_end>')
|
| 91 |
+
else:
|
| 92 |
+
qs = prompt
|
| 93 |
+
convs = [{"role": "user", "content": qs}]
|
| 94 |
+
convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs
|
| 95 |
+
prompt = magma_processor.tokenizer.apply_chat_template(
|
| 96 |
+
convs,
|
| 97 |
+
tokenize=False,
|
| 98 |
+
add_generation_prompt=True
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
| 102 |
+
inputs = magma_processor(images=[image_som], texts=prompt, return_tensors="pt")
|
| 103 |
+
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0).to(torch.bfloat16) # Add .to(torch.bfloat16) here for explicit casting
|
| 104 |
+
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
| 105 |
+
# inputs = inputs.to("cuda")
|
| 106 |
+
inputs = inputs.to("cuda", dtype=torch.bfloat16)
|
| 107 |
+
|
| 108 |
+
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
| 109 |
+
with torch.inference_mode():
|
| 110 |
+
output_ids = magam_model.generate(
|
| 111 |
+
**inputs,
|
| 112 |
+
temperature=0.0,
|
| 113 |
+
do_sample=False,
|
| 114 |
+
num_beams=1,
|
| 115 |
+
max_new_tokens=128,
|
| 116 |
+
use_cache=True
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
|
| 120 |
+
response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 121 |
+
response = response.replace(prompt_decoded, '').strip()
|
| 122 |
+
return response
|
| 123 |
+
|
| 124 |
+
@spaces.GPU
|
| 125 |
+
@torch.inference_mode()
|
| 126 |
+
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 127 |
+
def get_qa_response(instruction, image):
|
| 128 |
+
prompt = magma_qa_prompt.format(instruction)
|
| 129 |
+
if magam_model.config.mm_use_image_start_end:
|
| 130 |
+
qs = prompt.replace('<image>', '<image_start><image><image_end>')
|
| 131 |
+
else:
|
| 132 |
+
qs = prompt
|
| 133 |
+
convs = [{"role": "user", "content": qs}]
|
| 134 |
+
convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs
|
| 135 |
+
prompt = magma_processor.tokenizer.apply_chat_template(
|
| 136 |
+
convs,
|
| 137 |
+
tokenize=False,
|
| 138 |
+
add_generation_prompt=True
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
| 142 |
+
inputs = magma_processor(images=[image], texts=prompt, return_tensors="pt")
|
| 143 |
+
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0).to(torch.bfloat16) # Add .to(torch.bfloat16) here for explicit casting
|
| 144 |
+
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
| 145 |
+
# inputs = inputs.to("cuda")
|
| 146 |
+
inputs = inputs.to("cuda", dtype=torch.bfloat16)
|
| 147 |
+
|
| 148 |
+
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
| 149 |
+
with torch.inference_mode():
|
| 150 |
+
output_ids = magam_model.generate(
|
| 151 |
+
**inputs,
|
| 152 |
+
temperature=0.0,
|
| 153 |
+
do_sample=False,
|
| 154 |
+
num_beams=1,
|
| 155 |
+
max_new_tokens=128,
|
| 156 |
+
use_cache=True
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
|
| 160 |
+
response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 161 |
+
response = response.replace(prompt_decoded, '').strip()
|
| 162 |
+
return response
|
| 163 |
+
|
| 164 |
+
@spaces.GPU
|
| 165 |
+
@torch.inference_mode()
|
| 166 |
+
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 167 |
+
def process(
|
| 168 |
+
image_input,
|
| 169 |
+
box_threshold,
|
| 170 |
+
iou_threshold,
|
| 171 |
+
use_paddleocr,
|
| 172 |
+
imgsz,
|
| 173 |
+
instruction,
|
| 174 |
+
) -> Optional[Image.Image]:
|
| 175 |
+
|
| 176 |
+
logger.warning("Starting processing.")
|
| 177 |
+
try:
|
| 178 |
+
# image_save_path = 'imgs/saved_image_demo.png'
|
| 179 |
+
# image_input.save(image_save_path)
|
| 180 |
+
# image = Image.open(image_save_path)
|
| 181 |
+
box_overlay_ratio = image_input.size[0] / 3200
|
| 182 |
+
draw_bbox_config = {
|
| 183 |
+
'text_scale': 0.8 * box_overlay_ratio,
|
| 184 |
+
'text_thickness': max(int(2 * box_overlay_ratio), 1),
|
| 185 |
+
'text_padding': max(int(3 * box_overlay_ratio), 1),
|
| 186 |
+
'thickness': max(int(3 * box_overlay_ratio), 1),
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_input, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
|
| 190 |
+
text, ocr_bbox = ocr_bbox_rslt
|
| 191 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_input, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz,)
|
| 192 |
+
parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
|
| 193 |
+
|
| 194 |
+
if len(instruction) == 0:
|
| 195 |
+
logger.warning('finish processing')
|
| 196 |
+
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
| 197 |
+
return image, str(parsed_content_list)
|
| 198 |
+
|
| 199 |
+
elif instruction.startswith('Q:'):
|
| 200 |
+
response = get_qa_response(instruction, image_input)
|
| 201 |
+
return image_input, response
|
| 202 |
+
|
| 203 |
+
# parsed_content_list = str(parsed_content_list)
|
| 204 |
+
# convert xywh to yxhw
|
| 205 |
+
label_coordinates_yxhw = {}
|
| 206 |
+
for key, val in label_coordinates.items():
|
| 207 |
+
if val[2] < 0 or val[3] < 0:
|
| 208 |
+
continue
|
| 209 |
+
label_coordinates_yxhw[key] = [val[1], val[0], val[3], val[2]]
|
| 210 |
+
image_som = plot_boxes_with_marks(image_input.copy(), [val for key, val in label_coordinates_yxhw.items()], som_generator, edgecolor=(255,0,0), fn_save=None, normalized_to_pixel=False)
|
| 211 |
+
|
| 212 |
+
# convert xywh to xyxy
|
| 213 |
+
for key, val in label_coordinates.items():
|
| 214 |
+
label_coordinates[key] = [val[0], val[1], val[0] + val[2], val[1] + val[3]]
|
| 215 |
+
|
| 216 |
+
# normalize label_coordinates
|
| 217 |
+
for key, val in label_coordinates.items():
|
| 218 |
+
label_coordinates[key] = [val[0] / image_input.size[0], val[1] / image_input.size[1], val[2] / image_input.size[0], val[3] / image_input.size[1]]
|
| 219 |
+
|
| 220 |
+
magma_response = get_som_response(instruction, image_som)
|
| 221 |
+
logger.warning("magma repsonse: ", magma_response)
|
| 222 |
+
|
| 223 |
+
# map magma_response into the mark id
|
| 224 |
+
mark_id = extract_mark_id(magma_response)
|
| 225 |
+
if mark_id is not None:
|
| 226 |
+
if str(mark_id) in label_coordinates:
|
| 227 |
+
bbox_for_mark = label_coordinates[str(mark_id)]
|
| 228 |
+
else:
|
| 229 |
+
bbox_for_mark = None
|
| 230 |
+
else:
|
| 231 |
+
bbox_for_mark = None
|
| 232 |
+
|
| 233 |
+
if bbox_for_mark:
|
| 234 |
+
# draw bbox_for_mark on the image
|
| 235 |
+
image_som = plot_boxes_with_marks(
|
| 236 |
+
image_input,
|
| 237 |
+
[label_coordinates_yxhw[str(mark_id)]],
|
| 238 |
+
som_generator,
|
| 239 |
+
edgecolor=(255,127,111),
|
| 240 |
+
alpha=30,
|
| 241 |
+
fn_save=None,
|
| 242 |
+
normalized_to_pixel=False,
|
| 243 |
+
add_mark=False
|
| 244 |
+
)
|
| 245 |
+
else:
|
| 246 |
+
try:
|
| 247 |
+
if 'box' in magma_response:
|
| 248 |
+
pred_bbox = extract_bbox(magma_response)
|
| 249 |
+
click_point = [(pred_bbox[0][0] + pred_bbox[1][0]) / 2, (pred_bbox[0][1] + pred_bbox[1][1]) / 2]
|
| 250 |
+
click_point = [item / 1000 for item in click_point]
|
| 251 |
+
else:
|
| 252 |
+
click_point = pred_2_point(magma_response)
|
| 253 |
+
# de-normalize click_point (width, height)
|
| 254 |
+
click_point = [click_point[0] * image_input.size[0], click_point[1] * image_input.size[1]]
|
| 255 |
+
|
| 256 |
+
image_som = plot_circles_with_marks(
|
| 257 |
+
image_input,
|
| 258 |
+
[click_point],
|
| 259 |
+
som_generator,
|
| 260 |
+
edgecolor=(255,127,111),
|
| 261 |
+
linewidth=3,
|
| 262 |
+
fn_save=None,
|
| 263 |
+
normalized_to_pixel=False,
|
| 264 |
+
add_mark=False
|
| 265 |
+
)
|
| 266 |
+
except:
|
| 267 |
+
image_som = image_input
|
| 268 |
+
|
| 269 |
+
logger.warning("finish processing")
|
| 270 |
+
return image_som, str(parsed_content_list)
|
| 271 |
+
except Exception as e:
|
| 272 |
+
error_message = traceback.format_exc()
|
| 273 |
+
logger.warning(error_message)
|
| 274 |
+
return image_input, error_message
|
| 275 |
+
|
| 276 |
+
logger.warning("Starting App.")
|
| 277 |
+
with gr.Blocks() as demo:
|
| 278 |
+
gr.Markdown(MARKDOWN)
|
| 279 |
+
with gr.Row():
|
| 280 |
+
with gr.Column():
|
| 281 |
+
image_input_component = gr.Image(
|
| 282 |
+
type='pil', label='Upload image')
|
| 283 |
+
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
|
| 284 |
+
with gr.Accordion("Parameters", open=False) as parameter_row:
|
| 285 |
+
box_threshold_component = gr.Slider(
|
| 286 |
+
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
|
| 287 |
+
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
|
| 288 |
+
iou_threshold_component = gr.Slider(
|
| 289 |
+
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
|
| 290 |
+
use_paddleocr_component = gr.Checkbox(
|
| 291 |
+
label='Use PaddleOCR', value=True)
|
| 292 |
+
imgsz_component = gr.Slider(
|
| 293 |
+
label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640)
|
| 294 |
+
# text box
|
| 295 |
+
text_input_component = gr.Textbox(label='Text Input', placeholder='Text Input')
|
| 296 |
+
submit_button_component = gr.Button(
|
| 297 |
+
value='Submit', variant='primary')
|
| 298 |
+
with gr.Column():
|
| 299 |
+
image_output_component = gr.Image(type='pil', label='Image Output')
|
| 300 |
+
text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
|
| 301 |
+
|
| 302 |
+
submit_button_component.click(
|
| 303 |
+
fn=process,
|
| 304 |
+
inputs=[
|
| 305 |
+
image_input_component,
|
| 306 |
+
box_threshold_component,
|
| 307 |
+
iou_threshold_component,
|
| 308 |
+
use_paddleocr_component,
|
| 309 |
+
imgsz_component,
|
| 310 |
+
text_input_component
|
| 311 |
+
],
|
| 312 |
+
outputs=[image_output_component, text_output_component]
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
demo.launch(debug=True, show_error=True, share=True)
|
| 316 |
+
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
| 317 |
+
# demo.queue().launch(share=False)
|