Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
# π Masked Word Predictor | CPU-only HF Space
|
| 2 |
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
from transformers import pipeline
|
| 5 |
from transformers.pipelines.base import PipelineException
|
| 6 |
|
| 7 |
-
# 1. Load fill-mask pipeline once
|
| 8 |
fill_mask = pipeline("fill-mask", model="distilroberta-base", device=-1)
|
| 9 |
|
| 10 |
def predict_mask(sentence: str, top_k: int):
|
|
@@ -16,16 +17,21 @@ def predict_mask(sentence: str, top_k: int):
|
|
| 16 |
|
| 17 |
# 4. Validate presence of mask
|
| 18 |
if mask not in sentence:
|
| 19 |
-
return
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# 5. Run the pipeline safely
|
| 22 |
try:
|
| 23 |
preds = fill_mask(sentence, top_k=top_k)
|
| 24 |
except PipelineException as e:
|
| 25 |
-
return [[f"Error: {str(e)}", 0.0]]
|
|
|
|
| 26 |
|
| 27 |
-
# 6.
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
with gr.Blocks(title="π Masked Word Predictor") as demo:
|
| 31 |
gr.Markdown(
|
|
@@ -46,16 +52,18 @@ with gr.Blocks(title="π Masked Word Predictor") as demo:
|
|
| 46 |
|
| 47 |
predict_btn = gr.Button("Predict π", variant="primary")
|
| 48 |
|
| 49 |
-
|
| 50 |
-
results_table = gr.Table(
|
| 51 |
headers=["Sequence", "Score"],
|
|
|
|
|
|
|
|
|
|
| 52 |
label="Predictions"
|
| 53 |
)
|
| 54 |
|
| 55 |
predict_btn.click(
|
| 56 |
fn=predict_mask,
|
| 57 |
inputs=[sentence, top_k],
|
| 58 |
-
outputs=
|
| 59 |
)
|
| 60 |
|
| 61 |
if __name__ == "__main__":
|
|
|
|
| 1 |
# π Masked Word Predictor | CPU-only HF Space
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
+
import pandas as pd
|
| 5 |
from transformers import pipeline
|
| 6 |
from transformers.pipelines.base import PipelineException
|
| 7 |
|
| 8 |
+
# 1. Load the fill-mask pipeline once
|
| 9 |
fill_mask = pipeline("fill-mask", model="distilroberta-base", device=-1)
|
| 10 |
|
| 11 |
def predict_mask(sentence: str, top_k: int):
|
|
|
|
| 17 |
|
| 18 |
# 4. Validate presence of mask
|
| 19 |
if mask not in sentence:
|
| 20 |
+
return pd.DataFrame(
|
| 21 |
+
[["Error: please include `[MASK]` in your sentence.", 0.0]],
|
| 22 |
+
columns=["Sequence", "Score"]
|
| 23 |
+
)
|
| 24 |
|
| 25 |
# 5. Run the pipeline safely
|
| 26 |
try:
|
| 27 |
preds = fill_mask(sentence, top_k=top_k)
|
| 28 |
except PipelineException as e:
|
| 29 |
+
return pd.DataFrame([[f"Error: {str(e)}", 0.0]],
|
| 30 |
+
columns=["Sequence", "Score"])
|
| 31 |
|
| 32 |
+
# 6. Build a DataFrame from list-of-lists
|
| 33 |
+
rows = [[p["sequence"], round(p["score"], 3)] for p in preds]
|
| 34 |
+
return pd.DataFrame(rows, columns=["Sequence", "Score"])
|
| 35 |
|
| 36 |
with gr.Blocks(title="π Masked Word Predictor") as demo:
|
| 37 |
gr.Markdown(
|
|
|
|
| 52 |
|
| 53 |
predict_btn = gr.Button("Predict π", variant="primary")
|
| 54 |
|
| 55 |
+
results_df = gr.Dataframe(
|
|
|
|
| 56 |
headers=["Sequence", "Score"],
|
| 57 |
+
datatype=["str", "number"],
|
| 58 |
+
wrap=True,
|
| 59 |
+
interactive=False,
|
| 60 |
label="Predictions"
|
| 61 |
)
|
| 62 |
|
| 63 |
predict_btn.click(
|
| 64 |
fn=predict_mask,
|
| 65 |
inputs=[sentence, top_k],
|
| 66 |
+
outputs=results_df
|
| 67 |
)
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|