app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
| 3 |
+
from datasets import Dataset
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
MODEL_ID = "TinyLlama/TinyLlama-1.1B-Chat-v0.6"
|
| 7 |
+
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
|
| 10 |
+
|
| 11 |
+
if torch.cuda.is_available():
|
| 12 |
+
model.to("cuda")
|
| 13 |
+
|
| 14 |
+
history = []
|
| 15 |
+
|
| 16 |
+
def chat_fn(message, chat_history):
|
| 17 |
+
inputs = tokenizer.encode(message, return_tensors="pt")
|
| 18 |
+
if torch.cuda.is_available():
|
| 19 |
+
inputs = inputs.to("cuda")
|
| 20 |
+
outputs = model.generate(inputs, max_new_tokens=128, do_sample=True, top_p=0.9)
|
| 21 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 22 |
+
chat_history.append((message, response))
|
| 23 |
+
return "", chat_history
|
| 24 |
+
|
| 25 |
+
def train_model(text):
|
| 26 |
+
dataset = Dataset.from_dict({"text": [text]})
|
| 27 |
+
tokenized = dataset.map(lambda x: tokenizer(x["text"], truncation=True, padding="max_length", max_length=128), batched=True)
|
| 28 |
+
|
| 29 |
+
args = TrainingArguments(
|
| 30 |
+
output_dir="./results",
|
| 31 |
+
num_train_epochs=1,
|
| 32 |
+
per_device_train_batch_size=1,
|
| 33 |
+
save_steps=10,
|
| 34 |
+
logging_steps=5,
|
| 35 |
+
report_to="none",
|
| 36 |
+
fp16=torch.cuda.is_available()
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
trainer = Trainer(
|
| 40 |
+
model=model,
|
| 41 |
+
args=args,
|
| 42 |
+
train_dataset=tokenized,
|
| 43 |
+
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
trainer.train()
|
| 47 |
+
return "✅ Модель донавчена на вашому тексті!"
|
| 48 |
+
|
| 49 |
+
chat_ui = gr.ChatInterface(fn=chat_fn)
|
| 50 |
+
|
| 51 |
+
train_ui = gr.Interface(
|
| 52 |
+
fn=train_model,
|
| 53 |
+
inputs=gr.Textbox(lines=10, label="Введіть текст для донавчання"),
|
| 54 |
+
outputs="text",
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
gr.TabbedInterface([chat_ui, train_ui], ["💬 Chat", "🧠 Train"]).launch()
|