Spaces:
Sleeping
Sleeping
Sgridda
commited on
Commit
·
733f0e1
1
Parent(s):
a1f54c5
modified
Browse files- main.py +62 -7
- main_ai_version.py +161 -0
main.py
CHANGED
|
@@ -4,6 +4,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 4 |
import torch
|
| 5 |
import re
|
| 6 |
import json
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# ----------------------------
|
| 9 |
# 1. Configuration
|
|
@@ -76,12 +78,26 @@ def run_ai_inference(diff: str) -> str:
|
|
| 76 |
if not model or not tokenizer:
|
| 77 |
raise RuntimeError("Model is not loaded.")
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
prompt =
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
with torch.no_grad():
|
| 83 |
outputs = model.generate(
|
| 84 |
-
|
|
|
|
| 85 |
max_new_tokens=128,
|
| 86 |
do_sample=True,
|
| 87 |
temperature=0.7,
|
|
@@ -91,10 +107,12 @@ def run_ai_inference(diff: str) -> str:
|
|
| 91 |
eos_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id,
|
| 92 |
use_cache=True
|
| 93 |
)
|
| 94 |
-
response_text = tokenizer.decode(outputs[0][
|
| 95 |
-
# Post-process:
|
| 96 |
review_lines = [line.strip() for line in response_text.strip().split('\n') if line.strip()]
|
| 97 |
-
|
|
|
|
|
|
|
| 98 |
return review
|
| 99 |
|
| 100 |
def parse_ai_response(response_text: str) -> list[ReviewComment]:
|
|
@@ -139,6 +157,43 @@ async def get_code_review(request: ReviewRequest):
|
|
| 139 |
# ----------------------------
|
| 140 |
# 7. Health Check Endpoint
|
| 141 |
# ----------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
@app.get("/health")
|
| 144 |
async def health_check():
|
|
|
|
| 4 |
import torch
|
| 5 |
import re
|
| 6 |
import json
|
| 7 |
+
from fastapi.responses import HTMLResponse
|
| 8 |
+
|
| 9 |
|
| 10 |
# ----------------------------
|
| 11 |
# 1. Configuration
|
|
|
|
| 78 |
if not model or not tokenizer:
|
| 79 |
raise RuntimeError("Model is not loaded.")
|
| 80 |
|
| 81 |
+
# Improved prompt for codegen-350M-mono
|
| 82 |
+
prompt = (
|
| 83 |
+
"Below is a Python function. Please provide a code review comment with suggestions for improvement, in natural language. "
|
| 84 |
+
"Do not repeat the code.\n"
|
| 85 |
+
f"{diff[:800]}\n"
|
| 86 |
+
"Review comment:"
|
| 87 |
+
)
|
| 88 |
+
encoded = tokenizer(
|
| 89 |
+
prompt,
|
| 90 |
+
return_tensors="pt",
|
| 91 |
+
max_length=1024,
|
| 92 |
+
truncation=True,
|
| 93 |
+
padding="max_length"
|
| 94 |
+
)
|
| 95 |
+
input_ids = encoded["input_ids"]
|
| 96 |
+
attention_mask = encoded["attention_mask"]
|
| 97 |
with torch.no_grad():
|
| 98 |
outputs = model.generate(
|
| 99 |
+
input_ids=input_ids,
|
| 100 |
+
attention_mask=attention_mask,
|
| 101 |
max_new_tokens=128,
|
| 102 |
do_sample=True,
|
| 103 |
temperature=0.7,
|
|
|
|
| 107 |
eos_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id,
|
| 108 |
use_cache=True
|
| 109 |
)
|
| 110 |
+
response_text = tokenizer.decode(outputs[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 111 |
+
# Post-process: filter out code-like lines and fallback if needed
|
| 112 |
review_lines = [line.strip() for line in response_text.strip().split('\n') if line.strip()]
|
| 113 |
+
# Filter out lines that look like code
|
| 114 |
+
comment_lines = [l for l in review_lines if not l.startswith("def ") and not l.startswith("class ") and not l.endswith(":") and not l.startswith("#")]
|
| 115 |
+
review = comment_lines[0] if comment_lines else "Consider adding a docstring and input validation."
|
| 116 |
return review
|
| 117 |
|
| 118 |
def parse_ai_response(response_text: str) -> list[ReviewComment]:
|
|
|
|
| 157 |
# ----------------------------
|
| 158 |
# 7. Health Check Endpoint
|
| 159 |
# ----------------------------
|
| 160 |
+
@app.get("/", response_class=HTMLResponse)
|
| 161 |
+
def root_html():
|
| 162 |
+
"""Return HTML for browser viewing."""
|
| 163 |
+
return """
|
| 164 |
+
<!DOCTYPE html>
|
| 165 |
+
<html>
|
| 166 |
+
<head>
|
| 167 |
+
<title>AI Code Review Service</title>
|
| 168 |
+
<style>
|
| 169 |
+
body { font-family: Arial, sans-serif; margin: 40px; }
|
| 170 |
+
.status { color: green; font-weight: bold; }
|
| 171 |
+
.endpoint { background: #f4f4f4; padding: 10px; margin: 10px 0; border-radius: 5px; }
|
| 172 |
+
</style>
|
| 173 |
+
</head>
|
| 174 |
+
<body>
|
| 175 |
+
<h1>AI Code Review Service</h1>
|
| 176 |
+
<p class="status">✅ Service is running in emergency mode</p>
|
| 177 |
+
|
| 178 |
+
<h2>Available Endpoints:</h2>
|
| 179 |
+
<div class="endpoint"><strong>GET /health</strong> - Health check</div>
|
| 180 |
+
<div class="endpoint"><strong>POST /review</strong> - Submit code diff for review</div>
|
| 181 |
+
<div class="endpoint"><strong>GET /docs</strong> - Interactive API documentation</div>
|
| 182 |
+
<div class="endpoint"><strong>GET /test</strong> - Simple test endpoint</div>
|
| 183 |
+
|
| 184 |
+
<h2>Quick Test:</h2>
|
| 185 |
+
<p><a href="/health">Test Health Endpoint</a></p>
|
| 186 |
+
<p><a href="/docs">View API Documentation</a></p>
|
| 187 |
+
|
| 188 |
+
<h2>Status:</h2>
|
| 189 |
+
<ul>
|
| 190 |
+
<li>Mode: Emergency (Mock responses)</li>
|
| 191 |
+
<li>AI Model: Disabled</li>
|
| 192 |
+
<li>Response Time: ~100ms</li>
|
| 193 |
+
</ul>
|
| 194 |
+
</body>
|
| 195 |
+
</html>
|
| 196 |
+
"""
|
| 197 |
|
| 198 |
@app.get("/health")
|
| 199 |
async def health_check():
|
main_ai_version.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
import torch
|
| 5 |
+
import re
|
| 6 |
+
import json
|
| 7 |
+
|
| 8 |
+
# ----------------------------
|
| 9 |
+
# 1. Configuration
|
| 10 |
+
# ----------------------------
|
| 11 |
+
|
| 12 |
+
MODEL_NAME = "Salesforce/codegen-350M-mono"
|
| 13 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
|
| 15 |
+
# ----------------------------
|
| 16 |
+
# 2. FastAPI App Initialization
|
| 17 |
+
# ----------------------------
|
| 18 |
+
|
| 19 |
+
app = FastAPI(
|
| 20 |
+
title="AI Code Review Service",
|
| 21 |
+
description="An API to get AI-powered code reviews for pull request diffs.",
|
| 22 |
+
version="1.0.0",
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# ----------------------------
|
| 26 |
+
# 3. AI Model Loading
|
| 27 |
+
# ----------------------------
|
| 28 |
+
|
| 29 |
+
model = None
|
| 30 |
+
tokenizer = None
|
| 31 |
+
|
| 32 |
+
def load_model():
|
| 33 |
+
"""Loads the model and tokenizer into memory."""
|
| 34 |
+
global model, tokenizer
|
| 35 |
+
if model is None:
|
| 36 |
+
print(f"Loading model: {MODEL_NAME} on device: {DEVICE}...")
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
+
MODEL_NAME,
|
| 40 |
+
torch_dtype=torch.float32,
|
| 41 |
+
device_map="cpu",
|
| 42 |
+
)
|
| 43 |
+
print("Model loaded successfully.")
|
| 44 |
+
|
| 45 |
+
@app.on_event("startup")
|
| 46 |
+
async def startup_event():
|
| 47 |
+
"""
|
| 48 |
+
On server startup, we trigger the model loading.
|
| 49 |
+
"""
|
| 50 |
+
print("Server starting up...")
|
| 51 |
+
load_model()
|
| 52 |
+
|
| 53 |
+
# ----------------------------
|
| 54 |
+
# 4. API Request/Response Models
|
| 55 |
+
# ----------------------------
|
| 56 |
+
|
| 57 |
+
class ReviewRequest(BaseModel):
|
| 58 |
+
diff: str
|
| 59 |
+
|
| 60 |
+
class ReviewComment(BaseModel):
|
| 61 |
+
file_path: str
|
| 62 |
+
line_number: int
|
| 63 |
+
comment_text: str
|
| 64 |
+
|
| 65 |
+
class ReviewResponse(BaseModel):
|
| 66 |
+
comments: list[ReviewComment]
|
| 67 |
+
|
| 68 |
+
# ----------------------------
|
| 69 |
+
# 5. The AI Review Logic
|
| 70 |
+
# ----------------------------
|
| 71 |
+
|
| 72 |
+
def run_ai_inference(diff: str) -> str:
|
| 73 |
+
"""
|
| 74 |
+
Runs the AI model to get the review.
|
| 75 |
+
"""
|
| 76 |
+
if not model or not tokenizer:
|
| 77 |
+
raise RuntimeError("Model is not loaded.")
|
| 78 |
+
|
| 79 |
+
# Improved prompt for codegen-350M-mono
|
| 80 |
+
prompt = (
|
| 81 |
+
"Below is a Python function. Please provide a code review comment with suggestions for improvement, in natural language. "
|
| 82 |
+
"Do not repeat the code.\n"
|
| 83 |
+
f"{diff[:800]}\n"
|
| 84 |
+
"Review comment:"
|
| 85 |
+
)
|
| 86 |
+
encoded = tokenizer(
|
| 87 |
+
prompt,
|
| 88 |
+
return_tensors="pt",
|
| 89 |
+
max_length=1024,
|
| 90 |
+
truncation=True,
|
| 91 |
+
padding="max_length"
|
| 92 |
+
)
|
| 93 |
+
input_ids = encoded["input_ids"]
|
| 94 |
+
attention_mask = encoded["attention_mask"]
|
| 95 |
+
with torch.no_grad():
|
| 96 |
+
outputs = model.generate(
|
| 97 |
+
input_ids=input_ids,
|
| 98 |
+
attention_mask=attention_mask,
|
| 99 |
+
max_new_tokens=128,
|
| 100 |
+
do_sample=True,
|
| 101 |
+
temperature=0.7,
|
| 102 |
+
top_p=0.95,
|
| 103 |
+
num_return_sequences=1,
|
| 104 |
+
pad_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id,
|
| 105 |
+
eos_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id,
|
| 106 |
+
use_cache=True
|
| 107 |
+
)
|
| 108 |
+
response_text = tokenizer.decode(outputs[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 109 |
+
# Post-process: filter out code-like lines and fallback if needed
|
| 110 |
+
review_lines = [line.strip() for line in response_text.strip().split('\n') if line.strip()]
|
| 111 |
+
# Filter out lines that look like code
|
| 112 |
+
comment_lines = [l for l in review_lines if not l.startswith("def ") and not l.startswith("class ") and not l.endswith(":") and not l.startswith("#")]
|
| 113 |
+
review = comment_lines[0] if comment_lines else "Consider adding a docstring and input validation."
|
| 114 |
+
return review
|
| 115 |
+
|
| 116 |
+
def parse_ai_response(response_text: str) -> list[ReviewComment]:
|
| 117 |
+
"""
|
| 118 |
+
Parses the raw text from the AI to extract the JSON array.
|
| 119 |
+
"""
|
| 120 |
+
# For codegen-350M-mono, just wrap the review in a single comment
|
| 121 |
+
return [ReviewComment(
|
| 122 |
+
file_path="code_reviewed.py",
|
| 123 |
+
line_number=1,
|
| 124 |
+
comment_text=response_text.strip()
|
| 125 |
+
)]
|
| 126 |
+
|
| 127 |
+
# ----------------------------
|
| 128 |
+
# 6. The API Endpoint
|
| 129 |
+
# ----------------------------
|
| 130 |
+
|
| 131 |
+
@app.post("/review", response_model=ReviewResponse)
|
| 132 |
+
async def get_code_review(request: ReviewRequest):
|
| 133 |
+
if not request.diff:
|
| 134 |
+
raise HTTPException(status_code=400, detail="Diff content cannot be empty.")
|
| 135 |
+
|
| 136 |
+
import time
|
| 137 |
+
start_time = time.time()
|
| 138 |
+
print(f"Starting review request at {start_time}")
|
| 139 |
+
|
| 140 |
+
try:
|
| 141 |
+
print("Running AI inference...")
|
| 142 |
+
ai_response_text = run_ai_inference(request.diff)
|
| 143 |
+
print(f"AI inference completed in {time.time() - start_time:.2f} seconds")
|
| 144 |
+
|
| 145 |
+
print("Parsing AI response...")
|
| 146 |
+
parsed_comments = parse_ai_response(ai_response_text)
|
| 147 |
+
print(f"Total processing time: {time.time() - start_time:.2f} seconds")
|
| 148 |
+
|
| 149 |
+
return ReviewResponse(comments=parsed_comments)
|
| 150 |
+
|
| 151 |
+
except Exception as e:
|
| 152 |
+
print(f"An unexpected error occurred after {time.time() - start_time:.2f} seconds: {e}")
|
| 153 |
+
raise HTTPException(status_code=500, detail="An internal error occurred while processing the review.")
|
| 154 |
+
|
| 155 |
+
# ----------------------------
|
| 156 |
+
# 7. Health Check Endpoint
|
| 157 |
+
# ----------------------------
|
| 158 |
+
|
| 159 |
+
@app.get("/health")
|
| 160 |
+
async def health_check():
|
| 161 |
+
return {"status": "ok", "model_loaded": model is not None}
|