Spaces:
Running
Running
File size: 16,766 Bytes
9c534b4 ad55aeb 8348feb ad55aeb 8348feb ad55aeb 525a040 ad55aeb 6deed2e ad55aeb 9c534b4 ad55aeb 8348feb ad55aeb 525a040 9797fd9 ad55aeb 525a040 ad55aeb 9c534b4 ad55aeb 525a040 ad55aeb 9c534b4 ad55aeb 525a040 ad55aeb 9c534b4 ad55aeb 8348feb ad55aeb 8348feb ad55aeb 8348feb ad55aeb 8348feb ad55aeb 8348feb ad55aeb 525a040 ad55aeb 8348feb ad55aeb 8348feb ad55aeb 8348feb ad55aeb 8348feb ad55aeb 8348feb 525a040 8348feb ad55aeb 525a040 ad55aeb 8348feb ad55aeb 525a040 ad55aeb 8348feb caca294 ad55aeb 8348feb ad55aeb 525a040 ad55aeb 8348feb ad55aeb 8348feb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import json
import argparse
import os
import random
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
# Using LayoutLMv3TokenizerFast, LayoutLMv3Model
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
from transformers.utils import cached_file
from safetensors.torch import load_file
from TorchCRF import CRF
from torch.optim import AdamW
from tqdm import tqdm
from sklearn.metrics import precision_recall_fscore_support
# --- Configuration for Augmentation ---
MAX_BBOX_DIMENSION = 1000 # Corrected to 1000 to match LayoutLMv3 requirement
MAX_SHIFT = 30
AUGMENTATION_FACTOR = 1
# -------------------------------------
# --- Hugging Face Model ID ---
HF_MODEL_ID = "heerjtdev/edugenius"
# -----------------------------
# -------------------------
# Step 1: Preprocessing (Label Studio β BIO + bboxes)
# -------------------------
def preprocess_labelstudio(input_path, output_path):
with open(input_path, "r", encoding="utf-8") as f:
data = json.load(f)
processed = []
total_items = len(data) # Added for potential verbose logging
print(f"π Starting preprocessing of {total_items} documents My name is Aastik!! BOOBS...")
for item in data:
words = item["data"]["original_words"]
bboxes = item["data"]["original_bboxes"]
labels = ["O"] * len(words)
# --- NEW: Bounding Box Normalization/Clamping ---
# Defensively ensures all coordinates are within the [0, 1000] range
# required by LayoutLMv3's spatial position embeddings.
clamped_bboxes = []
for bbox in bboxes:
# Clamp coordinates to [0, 1000]
x_min, y_min, x_max, y_max = bbox
new_x_min = max(0, min(x_min, 1000))
new_y_min = max(0, min(y_min, 1000))
new_x_max = max(0, min(x_max, 1000))
new_y_max = max(0, min(y_max, 1000))
# Safety check: ensure min <= max (this should rarely trigger
# if the original bboxes were valid, but is good practice)
if new_x_min > new_x_max: new_x_min = new_x_max
if new_y_min > new_y_max: new_y_min = new_y_max
clamped_bboxes.append([new_x_min, new_y_min, new_x_max, new_y_max])
# Use the clamped bboxes for the rest of the pipeline
final_bboxes = clamped_bboxes
# ------------------------------------------------
if "annotations" in item:
for ann in item["annotations"]:
for res in ann["result"]:
# Check if the result item is a span annotation
if "value" in res and "labels" in res["value"]:
text = res["value"]["text"]
tag = res["value"]["labels"][0]
# Some tokenizers may split words, so we must find a consecutive word match.
text_tokens = text.split()
for i in range(len(words) - len(text_tokens) + 1):
if words[i:i + len(text_tokens)] == text_tokens:
labels[i] = f"B-{tag}"
for j in range(1, len(text_tokens)):
labels[i + j] = f"I-{tag}"
break # Move to next annotation if a match is found
processed.append({"tokens": words, "labels": labels, "bboxes": final_bboxes})
with open(output_path, "w", encoding="utf-8") as f:
json.dump(processed, f, indent=2, ensure_ascii=False)
print(f"β
Preprocessed data saved to {output_path}")
return output_path
# -------------------------
# Step 1.5: Bounding Box Augmentation
# -------------------------
def translate_bbox(bbox, shift_x, shift_y):
"""
Translates a single bounding box [x_min, y_min, x_max, y_max] by (shift_x, shift_y)
and clamps the coordinates to the valid range [0, MAX_BBOX_DIMENSION].
"""
x_min, y_min, x_max, y_max = bbox
new_x_min = x_min + shift_x
new_y_min = y_min + shift_y
new_x_max = x_max + shift_x
new_y_max = y_max + shift_y
# Clamp the new coordinates (MAX_BBOX_DIMENSION is 1000)
new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
new_y_max = max(0, min(new_y_max, MAX_BBOX_DIMENSION))
# Safety check
if new_x_min > new_x_max: new_x_min = new_x_max
if new_y_min > new_y_max: new_y_min = new_y_max
return [new_x_min, new_y_min, new_x_max, new_y_max]
def augment_sample(sample):
"""
Generates a new sample by translating all bounding boxes.
"""
shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)
new_sample = sample.copy()
# Ensure tokens and labels are copied (they remain unchanged)
new_sample["tokens"] = sample["tokens"]
new_sample["labels"] = sample["labels"]
# Translate all bounding boxes
new_bboxes = [translate_bbox(bbox, shift_x, shift_y) for bbox in sample["bboxes"]]
new_sample["bboxes"] = new_bboxes
return new_sample
def augment_and_save_dataset(input_json_path, output_json_path):
"""
Loads preprocessed data, performs augmentation, and saves the result.
"""
print(f"π Loading preprocessed data from {input_json_path} for augmentation...")
with open(input_json_path, 'r', encoding="utf-8") as f:
training_data = json.load(f)
augmented_data = []
original_count = len(training_data)
print(f"π Starting augmentation (Factor: {AUGMENTATION_FACTOR}, {original_count} documents)...")
for i, original_sample in enumerate(training_data):
# 1. Add the original sample
augmented_data.append(original_sample)
# 2. Generate augmented samples
for _ in range(AUGMENTATION_FACTOR):
if "tokens" in original_sample and "labels" in original_sample and "bboxes" in original_sample:
augmented_data.append(augment_sample(original_sample))
else:
print(f"Warning: Skipping augmentation for sample {i} due to missing keys.")
augmented_count = len(augmented_data)
print(f"Dataset Augmentation: Original samples: {original_count}, Total samples: {augmented_count}")
# Save the augmented dataset
with open(output_json_path, 'w', encoding="utf-8") as f:
json.dump(augmented_data, f, indent=2, ensure_ascii=False)
print(f"β
Augmented data saved to {output_json_path}")
return output_json_path
# -------------------------
# Step 2: Dataset Class
# -------------------------
class LayoutDataset(Dataset):
def __init__(self, json_path, tokenizer, label2id, max_len=512):
with open(json_path, "r", encoding="utf-8") as f:
self.data = json.load(f)
self.tokenizer = tokenizer
self.label2id = label2id
self.max_len = max_len
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]
# Tokenize
encodings = self.tokenizer(
words,
boxes=bboxes,
padding="max_length",
truncation=True,
max_length=self.max_len,
return_offsets_mapping=True,
return_tensors="pt"
)
# Align labels to word pieces
word_ids = encodings.word_ids(batch_index=0)
label_ids = []
for word_id in word_ids:
if word_id is None:
label_ids.append(self.label2id["O"]) # [CLS], [SEP], padding
else:
label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))
encodings.pop("offset_mapping")
encodings["labels"] = torch.tensor(label_ids)
return {key: val.squeeze(0) for key, val in encodings.items()}
# -------------------------
# Step 3: Model Architecture (PATCHED TO LOAD WEIGHTS CORRECTLY)
# -------------------------
class LayoutLMv3CRF(nn.Module):
def __init__(self, model_name, num_labels, device):
super().__init__()
# 1. Initialize the LayoutLMv3 model using the base class
# We start by initializing from the base configuration to ensure all weights are present
self.layoutlm = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base")
# 2. Try to load the fine-tuned weights from the Hugging Face Hub/Cache
try:
# This resolves the path to the downloaded model.safetensors in the cache
# Assumes you have renamed your file on the Hugging Face Hub to 'model.safetensors'
weights_path = cached_file(model_name, "model.safetensors")
fine_tuned_weights = load_file(weights_path)
# 3. Strip the Mismatching Prefix (Assuming 'layoutlm.' prefix from a previous wrapper)
new_state_dict = {}
prefix_to_strip = "layoutlm."
for key, value in fine_tuned_weights.items():
if key.startswith(prefix_to_strip):
new_key = key[len(prefix_to_strip):]
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
# 4. Load the fixed state dictionary into the LayoutLMv3Model
# strict=False allows us to ignore classifier/CRF weights not in LayoutLMv3Model
print("π Successfully loaded and stripped keys. Loading base LayoutLMv3 weights...")
# Load only the weights for the transformer body
missing_keys, unexpected_keys = self.layoutlm.load_state_dict(new_state_dict, strict=False)
print(f"Weights loading done: {len(missing_keys)} missing, {len(unexpected_keys)} unexpected keys.")
except Exception as e:
print(f"β Fine-tuned weights could not be loaded directly and mapped. Starting with random weights.")
print(f"Error: {e}")
# Fallback: Load the LayoutLMv3 component directly from the Hub ID (will result in random weights for layers)
self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
# 5. Initialize the new heads (CRF layer and Classifier)
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
self.crf = CRF(num_labels)
def forward(self, input_ids, bbox, attention_mask, labels=None):
outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
sequence_output = self.dropout(outputs.last_hidden_state)
emissions = self.classifier(sequence_output)
if labels is not None:
# Training mode: calculate loss
log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
return -log_likelihood.mean()
else:
# Inference mode: decode best path
best_paths = self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
return best_paths
# -------------------------
# Step 4: Training + Evaluation
# -------------------------
def train_one_epoch(model, dataloader, optimizer, device):
model.train()
total_loss = 0
for batch in tqdm(dataloader, desc="Training"):
batch = {k: v.to(device) for k, v in batch.items()}
labels = batch.pop("labels")
optimizer.zero_grad()
loss = model(**batch, labels=labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(dataloader)
def evaluate(model, dataloader, device, id2label):
model.eval()
all_preds, all_labels = [], []
with torch.no_grad():
for batch in tqdm(dataloader, desc="Evaluating"):
batch = {k: v.to(device) for k, v in batch.items()}
labels = batch.pop("labels").cpu().numpy()
# The model returns a list of lists of predicted labels in inference mode
preds = model(**batch)
for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
valid = mask == 1
l = l[valid].tolist()
all_labels.extend(l)
# Ensure pred length matches label length for the unmasked tokens
all_preds.extend(p[:len(l)])
# Exclude the "O" label and other special tokens if necessary, but using 'micro' average
precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
return precision, recall, f1
# -------------------------
# Step 5: Main Pipeline (Training) - MODIFIED MODEL/TOKENIZER LOADING
# -------------------------
def main(args):
# LABELS UPDATED: Added SECTION_HEADING and PASSAGE
labels = [
"O",
"B-QUESTION", "I-QUESTION",
"B-OPTION", "I-OPTION",
"B-ANSWER", "I-ANSWER",
"B-SECTION_HEADING", "I-SECTION_HEADING",
"B-PASSAGE", "I-PASSAGE"
]
label2id = {l: i for i, l in enumerate(labels)}
id2label = {i: l for l, i in label2id.items()}
# --- SETUP: Use a temporary directory for intermediate files ---
TEMP_DIR = "temp_intermediate_files"
os.makedirs(TEMP_DIR, exist_ok=True)
print(f"\n--- SETUP PHASE: Created temp directory: {TEMP_DIR} ---")
# 1. Preprocess
print("\n--- START PHASE: PREPROCESSING ---")
initial_bio_json = os.path.join(TEMP_DIR, "training_data_bio_bboxes.json")
preprocess_labelstudio(args.input, initial_bio_json)
# 2. Augment
print("\n--- START PHASE: AUGMENTATION ---")
augmented_bio_json = os.path.join(TEMP_DIR, "augmented_training_data_bio_bboxes.json")
final_data_path = augment_and_save_dataset(initial_bio_json, augmented_bio_json)
# 3. Load and split augmented dataset
print("\n--- START PHASE: MODEL/DATASET SETUP ---")
# Load tokenizer from the specified Hugging Face ID
tokenizer = LayoutLMv3TokenizerFast.from_pretrained(HF_MODEL_ID)
dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
val_size = int(0.2 * len(dataset))
train_size = len(dataset) - val_size
# Use a fixed seed for reproducibility in split
torch.manual_seed(42)
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
# 4. Initialize and load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Pass the Hugging Face ID and device to the custom model wrapper
model = LayoutLMv3CRF(HF_MODEL_ID, num_labels=len(labels), device=device).to(device)
ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
os.makedirs("checkpoints", exist_ok=True)
if os.path.exists(ckpt_path):
print(f"β οΈ Starting fresh training. Old checkpoint {ckpt_path} may be incompatible with new label count.")
optimizer = AdamW(model.parameters(), lr=args.lr)
# 5. Training loop
for epoch in range(args.epochs):
print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} TRAINING ---")
avg_loss = train_one_epoch(model, train_loader, optimizer, device)
print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} EVALUATION ---")
precision, recall, f1 = evaluate(model, val_loader, device, id2label)
print(
f"Epoch {epoch + 1}/{args.epochs} | Loss: {avg_loss:.4f} | P: {precision:.3f} R: {recall:.3f} F1: {f1:.3f}")
torch.save(model.state_dict(), ckpt_path)
print(f"πΎ Model saved at {ckpt_path}")
# -------------------------
# Step 7: Main Execution
# -------------------------
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LayoutLMv3 Fine-tuning and Inference Script.")
parser.add_argument("--mode", type=str, required=True, choices=["train", "infer"],
help="Select mode: 'train' or 'infer'")
parser.add_argument("--input", type=str, help="Path to input file (Label Studio JSON for train, PDF for infer).")
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--epochs", type=int, default=5)
parser.add_argument("--lr", type=float, default=5e-5)
parser.add_argument("--max_len", type=int, default=512)
args = parser.parse_args()
if args.mode == "train":
if not args.input:
parser.error("--input is required for 'train' mode.")
main(args) |