File size: 16,766 Bytes
9c534b4
ad55aeb
 
 
 
 
 
 
8348feb
ad55aeb
8348feb
 
ad55aeb
 
525a040
ad55aeb
6deed2e
ad55aeb
9c534b4
ad55aeb
 
 
 
 
8348feb
 
 
 
 
 
ad55aeb
 
 
 
 
 
 
 
 
525a040
9797fd9
ad55aeb
525a040
ad55aeb
 
 
 
9c534b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad55aeb
 
 
 
 
 
 
 
 
 
525a040
 
 
 
 
ad55aeb
 
9c534b4
ad55aeb
525a040
 
ad55aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c534b4
ad55aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8348feb
ad55aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8348feb
ad55aeb
 
8348feb
ad55aeb
8348feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad55aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8348feb
ad55aeb
 
 
 
525a040
ad55aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8348feb
ad55aeb
 
 
 
 
8348feb
ad55aeb
 
8348feb
ad55aeb
 
 
 
 
8348feb
ad55aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
8348feb
525a040
 
 
 
8348feb
ad55aeb
525a040
ad55aeb
 
8348feb
ad55aeb
525a040
ad55aeb
 
 
 
8348feb
 
 
caca294
ad55aeb
 
 
 
 
 
 
 
 
 
 
 
 
8348feb
 
 
 
ad55aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525a040
ad55aeb
 
 
 
 
8348feb
ad55aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8348feb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

import json
import argparse
import os
import random
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
# Using LayoutLMv3TokenizerFast, LayoutLMv3Model
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
from transformers.utils import cached_file
from safetensors.torch import load_file
from TorchCRF import CRF
from torch.optim import AdamW
from tqdm import tqdm
from sklearn.metrics import precision_recall_fscore_support

# --- Configuration for Augmentation ---
MAX_BBOX_DIMENSION = 1000  # Corrected to 1000 to match LayoutLMv3 requirement
MAX_SHIFT = 30
AUGMENTATION_FACTOR = 1

# -------------------------------------

# --- Hugging Face Model ID ---
HF_MODEL_ID = "heerjtdev/edugenius"


# -----------------------------


# -------------------------
# Step 1: Preprocessing (Label Studio β†’ BIO + bboxes)
# -------------------------
def preprocess_labelstudio(input_path, output_path):
    with open(input_path, "r", encoding="utf-8") as f:
        data = json.load(f)

    processed = []
    total_items = len(data)  # Added for potential verbose logging
    print(f"πŸ”„ Starting preprocessing of {total_items} documents My name is Aastik!! BOOBS...")

    for item in data:
        words = item["data"]["original_words"]
        bboxes = item["data"]["original_bboxes"]
        labels = ["O"] * len(words)

        # --- NEW: Bounding Box Normalization/Clamping ---
        # Defensively ensures all coordinates are within the [0, 1000] range
        # required by LayoutLMv3's spatial position embeddings.
        clamped_bboxes = []
        for bbox in bboxes:
            # Clamp coordinates to [0, 1000]
            x_min, y_min, x_max, y_max = bbox

            new_x_min = max(0, min(x_min, 1000))
            new_y_min = max(0, min(y_min, 1000))
            new_x_max = max(0, min(x_max, 1000))
            new_y_max = max(0, min(y_max, 1000))

            # Safety check: ensure min <= max (this should rarely trigger
            # if the original bboxes were valid, but is good practice)
            if new_x_min > new_x_max: new_x_min = new_x_max
            if new_y_min > new_y_max: new_y_min = new_y_max

            clamped_bboxes.append([new_x_min, new_y_min, new_x_max, new_y_max])

        # Use the clamped bboxes for the rest of the pipeline
        final_bboxes = clamped_bboxes
        # ------------------------------------------------

        if "annotations" in item:
            for ann in item["annotations"]:
                for res in ann["result"]:
                    # Check if the result item is a span annotation
                    if "value" in res and "labels" in res["value"]:
                        text = res["value"]["text"]
                        tag = res["value"]["labels"][0]
                        # Some tokenizers may split words, so we must find a consecutive word match.
                        text_tokens = text.split()

                        for i in range(len(words) - len(text_tokens) + 1):
                            if words[i:i + len(text_tokens)] == text_tokens:
                                labels[i] = f"B-{tag}"
                                for j in range(1, len(text_tokens)):
                                    labels[i + j] = f"I-{tag}"
                                break  # Move to next annotation if a match is found

        processed.append({"tokens": words, "labels": labels, "bboxes": final_bboxes})

    with open(output_path, "w", encoding="utf-8") as f:
        json.dump(processed, f, indent=2, ensure_ascii=False)

    print(f"βœ… Preprocessed data saved to {output_path}")
    return output_path


# -------------------------
# Step 1.5: Bounding Box Augmentation
# -------------------------

def translate_bbox(bbox, shift_x, shift_y):
    """
    Translates a single bounding box [x_min, y_min, x_max, y_max] by (shift_x, shift_y)
    and clamps the coordinates to the valid range [0, MAX_BBOX_DIMENSION].
    """
    x_min, y_min, x_max, y_max = bbox

    new_x_min = x_min + shift_x
    new_y_min = y_min + shift_y
    new_x_max = x_max + shift_x
    new_y_max = y_max + shift_y

    # Clamp the new coordinates (MAX_BBOX_DIMENSION is 1000)
    new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
    new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
    new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
    new_y_max = max(0, min(new_y_max, MAX_BBOX_DIMENSION))

    # Safety check
    if new_x_min > new_x_max: new_x_min = new_x_max
    if new_y_min > new_y_max: new_y_min = new_y_max

    return [new_x_min, new_y_min, new_x_max, new_y_max]


def augment_sample(sample):
    """
    Generates a new sample by translating all bounding boxes.
    """
    shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
    shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)

    new_sample = sample.copy()

    # Ensure tokens and labels are copied (they remain unchanged)
    new_sample["tokens"] = sample["tokens"]
    new_sample["labels"] = sample["labels"]

    # Translate all bounding boxes
    new_bboxes = [translate_bbox(bbox, shift_x, shift_y) for bbox in sample["bboxes"]]
    new_sample["bboxes"] = new_bboxes

    return new_sample


def augment_and_save_dataset(input_json_path, output_json_path):
    """
    Loads preprocessed data, performs augmentation, and saves the result.
    """
    print(f"πŸ”„ Loading preprocessed data from {input_json_path} for augmentation...")
    with open(input_json_path, 'r', encoding="utf-8") as f:
        training_data = json.load(f)

    augmented_data = []
    original_count = len(training_data)

    print(f"πŸ”„ Starting augmentation (Factor: {AUGMENTATION_FACTOR}, {original_count} documents)...")

    for i, original_sample in enumerate(training_data):
        # 1. Add the original sample
        augmented_data.append(original_sample)

        # 2. Generate augmented samples
        for _ in range(AUGMENTATION_FACTOR):
            if "tokens" in original_sample and "labels" in original_sample and "bboxes" in original_sample:
                augmented_data.append(augment_sample(original_sample))
            else:
                print(f"Warning: Skipping augmentation for sample {i} due to missing keys.")

    augmented_count = len(augmented_data)
    print(f"Dataset Augmentation: Original samples: {original_count}, Total samples: {augmented_count}")

    # Save the augmented dataset
    with open(output_json_path, 'w', encoding="utf-8") as f:
        json.dump(augmented_data, f, indent=2, ensure_ascii=False)

    print(f"βœ… Augmented data saved to {output_json_path}")
    return output_json_path


# -------------------------
# Step 2: Dataset Class
# -------------------------
class LayoutDataset(Dataset):
    def __init__(self, json_path, tokenizer, label2id, max_len=512):
        with open(json_path, "r", encoding="utf-8") as f:
            self.data = json.load(f)
        self.tokenizer = tokenizer
        self.label2id = label2id
        self.max_len = max_len

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        item = self.data[idx]
        words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]

        # Tokenize
        encodings = self.tokenizer(
            words,
            boxes=bboxes,
            padding="max_length",
            truncation=True,
            max_length=self.max_len,
            return_offsets_mapping=True,
            return_tensors="pt"
        )

        # Align labels to word pieces
        word_ids = encodings.word_ids(batch_index=0)
        label_ids = []
        for word_id in word_ids:
            if word_id is None:
                label_ids.append(self.label2id["O"])  # [CLS], [SEP], padding
            else:
                label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))

        encodings.pop("offset_mapping")
        encodings["labels"] = torch.tensor(label_ids)

        return {key: val.squeeze(0) for key, val in encodings.items()}


# -------------------------
# Step 3: Model Architecture (PATCHED TO LOAD WEIGHTS CORRECTLY)
# -------------------------
class LayoutLMv3CRF(nn.Module):
    def __init__(self, model_name, num_labels, device):
        super().__init__()

        # 1. Initialize the LayoutLMv3 model using the base class
        # We start by initializing from the base configuration to ensure all weights are present
        self.layoutlm = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base")

        # 2. Try to load the fine-tuned weights from the Hugging Face Hub/Cache
        try:
            # This resolves the path to the downloaded model.safetensors in the cache
            # Assumes you have renamed your file on the Hugging Face Hub to 'model.safetensors'
            weights_path = cached_file(model_name, "model.safetensors")
            fine_tuned_weights = load_file(weights_path)

            # 3. Strip the Mismatching Prefix (Assuming 'layoutlm.' prefix from a previous wrapper)
            new_state_dict = {}
            prefix_to_strip = "layoutlm."

            for key, value in fine_tuned_weights.items():
                if key.startswith(prefix_to_strip):
                    new_key = key[len(prefix_to_strip):]
                    new_state_dict[new_key] = value
                else:
                    new_state_dict[key] = value

            # 4. Load the fixed state dictionary into the LayoutLMv3Model
            # strict=False allows us to ignore classifier/CRF weights not in LayoutLMv3Model
            print("πŸ”„ Successfully loaded and stripped keys. Loading base LayoutLMv3 weights...")

            # Load only the weights for the transformer body
            missing_keys, unexpected_keys = self.layoutlm.load_state_dict(new_state_dict, strict=False)

            print(f"Weights loading done: {len(missing_keys)} missing, {len(unexpected_keys)} unexpected keys.")

        except Exception as e:
            print(f"❌ Fine-tuned weights could not be loaded directly and mapped. Starting with random weights.")
            print(f"Error: {e}")
            # Fallback: Load the LayoutLMv3 component directly from the Hub ID (will result in random weights for layers)
            self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)

        # 5. Initialize the new heads (CRF layer and Classifier)
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
        self.crf = CRF(num_labels)

    def forward(self, input_ids, bbox, attention_mask, labels=None):
        outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
        sequence_output = self.dropout(outputs.last_hidden_state)
        emissions = self.classifier(sequence_output)

        if labels is not None:
            # Training mode: calculate loss
            log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
            return -log_likelihood.mean()
        else:
            # Inference mode: decode best path
            best_paths = self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
            return best_paths


# -------------------------
# Step 4: Training + Evaluation
# -------------------------
def train_one_epoch(model, dataloader, optimizer, device):
    model.train()
    total_loss = 0
    for batch in tqdm(dataloader, desc="Training"):
        batch = {k: v.to(device) for k, v in batch.items()}
        labels = batch.pop("labels")
        optimizer.zero_grad()
        loss = model(**batch, labels=labels)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    return total_loss / len(dataloader)


def evaluate(model, dataloader, device, id2label):
    model.eval()
    all_preds, all_labels = [], []
    with torch.no_grad():
        for batch in tqdm(dataloader, desc="Evaluating"):
            batch = {k: v.to(device) for k, v in batch.items()}
            labels = batch.pop("labels").cpu().numpy()
            # The model returns a list of lists of predicted labels in inference mode
            preds = model(**batch)
            for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
                valid = mask == 1
                l = l[valid].tolist()
                all_labels.extend(l)
                # Ensure pred length matches label length for the unmasked tokens
                all_preds.extend(p[:len(l)])

                # Exclude the "O" label and other special tokens if necessary, but using 'micro' average
    precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
    return precision, recall, f1


# -------------------------
# Step 5: Main Pipeline (Training) - MODIFIED MODEL/TOKENIZER LOADING
# -------------------------
def main(args):
    # LABELS UPDATED: Added SECTION_HEADING and PASSAGE
    labels = [
        "O",
        "B-QUESTION", "I-QUESTION",
        "B-OPTION", "I-OPTION",
        "B-ANSWER", "I-ANSWER",
        "B-SECTION_HEADING", "I-SECTION_HEADING",
        "B-PASSAGE", "I-PASSAGE"
    ]
    label2id = {l: i for i, l in enumerate(labels)}
    id2label = {i: l for l, i in label2id.items()}

    # --- SETUP: Use a temporary directory for intermediate files ---
    TEMP_DIR = "temp_intermediate_files"
    os.makedirs(TEMP_DIR, exist_ok=True)
    print(f"\n--- SETUP PHASE: Created temp directory: {TEMP_DIR} ---")

    # 1. Preprocess
    print("\n--- START PHASE: PREPROCESSING ---")
    initial_bio_json = os.path.join(TEMP_DIR, "training_data_bio_bboxes.json")
    preprocess_labelstudio(args.input, initial_bio_json)

    # 2. Augment
    print("\n--- START PHASE: AUGMENTATION ---")
    augmented_bio_json = os.path.join(TEMP_DIR, "augmented_training_data_bio_bboxes.json")
    final_data_path = augment_and_save_dataset(initial_bio_json, augmented_bio_json)

    # 3. Load and split augmented dataset
    print("\n--- START PHASE: MODEL/DATASET SETUP ---")

    # Load tokenizer from the specified Hugging Face ID
    tokenizer = LayoutLMv3TokenizerFast.from_pretrained(HF_MODEL_ID)

    dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
    val_size = int(0.2 * len(dataset))
    train_size = len(dataset) - val_size

    # Use a fixed seed for reproducibility in split
    torch.manual_seed(42)
    train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
    train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=args.batch_size)

    # 4. Initialize and load model
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    # Pass the Hugging Face ID and device to the custom model wrapper
    model = LayoutLMv3CRF(HF_MODEL_ID, num_labels=len(labels), device=device).to(device)

    ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
    os.makedirs("checkpoints", exist_ok=True)
    if os.path.exists(ckpt_path):
        print(f"⚠️ Starting fresh training. Old checkpoint {ckpt_path} may be incompatible with new label count.")

    optimizer = AdamW(model.parameters(), lr=args.lr)

    # 5. Training loop
    for epoch in range(args.epochs):
        print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} TRAINING ---")
        avg_loss = train_one_epoch(model, train_loader, optimizer, device)

        print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} EVALUATION ---")
        precision, recall, f1 = evaluate(model, val_loader, device, id2label)

        print(
            f"Epoch {epoch + 1}/{args.epochs} | Loss: {avg_loss:.4f} | P: {precision:.3f} R: {recall:.3f} F1: {f1:.3f}")
        torch.save(model.state_dict(), ckpt_path)
        print(f"πŸ’Ύ Model saved at {ckpt_path}")


# -------------------------
# Step 7: Main Execution
# -------------------------
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="LayoutLMv3 Fine-tuning and Inference Script.")
    parser.add_argument("--mode", type=str, required=True, choices=["train", "infer"],
                        help="Select mode: 'train' or 'infer'")
    parser.add_argument("--input", type=str, help="Path to input file (Label Studio JSON for train, PDF for infer).")
    parser.add_argument("--batch_size", type=int, default=4)
    parser.add_argument("--epochs", type=int, default=5)
    parser.add_argument("--lr", type=float, default=5e-5)
    parser.add_argument("--max_len", type=int, default=512)
    args = parser.parse_args()

    if args.mode == "train":
        if not args.input:
            parser.error("--input is required for 'train' mode.")
        main(args)