Upload folder using huggingface_hub
Browse files- app.py +84 -368
- collect_evals.py +480 -0
- requirements.txt +5 -0
app.py
CHANGED
|
@@ -1,23 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
| 3 |
-
import
|
| 4 |
-
from dataclasses import dataclass
|
| 5 |
-
from datetime import datetime, timezone
|
| 6 |
-
from pathlib import Path
|
| 7 |
-
from typing import Any, Dict, List, Optional
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
import requests
|
| 11 |
-
import yaml
|
| 12 |
-
from huggingface_hub import hf_hub_download
|
| 13 |
-
from huggingface_hub.utils import HfHubHTTPError
|
| 14 |
|
| 15 |
-
API_BASE = "https://huggingface.co/api"
|
| 16 |
-
PIPELINE_FILTER = "text-generation"
|
| 17 |
-
TRENDING_LIMIT = 10
|
| 18 |
-
TRENDING_FETCH_LIMIT = 50
|
| 19 |
-
PR_SCAN_LIMIT = 40
|
| 20 |
-
USER_AGENT = "skills-evals-leaderboard/0.2"
|
| 21 |
TABLE_HEADERS = [
|
| 22 |
"Model",
|
| 23 |
"Benchmark",
|
|
@@ -26,393 +24,111 @@ TABLE_HEADERS = [
|
|
| 26 |
]
|
| 27 |
|
| 28 |
TABLE_DATATYPES = [
|
| 29 |
-
"
|
| 30 |
"text",
|
| 31 |
"number",
|
| 32 |
"markdown",
|
| 33 |
]
|
| 34 |
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
text = text.lower()
|
| 40 |
-
text = re.sub(r"[^a-z0-9]+", " ", text)
|
| 41 |
-
return text.strip()
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def _coerce_score(value: Any) -> Optional[float]:
|
| 45 |
-
if value is None:
|
| 46 |
-
return None
|
| 47 |
-
if isinstance(value, (int, float)):
|
| 48 |
-
return float(value)
|
| 49 |
-
if isinstance(value, str):
|
| 50 |
-
candidate = value.strip()
|
| 51 |
-
if candidate.endswith("%"):
|
| 52 |
-
candidate = candidate[:-1]
|
| 53 |
-
try:
|
| 54 |
-
return float(candidate)
|
| 55 |
-
except ValueError:
|
| 56 |
-
return None
|
| 57 |
-
return None
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
@dataclass(frozen=True)
|
| 61 |
-
class BenchmarkSpec:
|
| 62 |
-
key: str
|
| 63 |
-
label: str
|
| 64 |
-
aliases: tuple[str, ...]
|
| 65 |
|
| 66 |
-
def matches(self, fields: List[str]) -> bool:
|
| 67 |
-
for alias in self.aliases:
|
| 68 |
-
alias_norm = _normalize(alias)
|
| 69 |
-
if not alias_norm:
|
| 70 |
-
continue
|
| 71 |
-
for field in fields:
|
| 72 |
-
if alias_norm in field:
|
| 73 |
-
return True
|
| 74 |
-
return False
|
| 75 |
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
BENCHMARKS: Dict[str, BenchmarkSpec] = {
|
| 78 |
-
"mmlu": BenchmarkSpec(
|
| 79 |
-
key="mmlu",
|
| 80 |
-
label="MMLU",
|
| 81 |
-
aliases=("mmlu", "massive multitask language understanding"),
|
| 82 |
-
),
|
| 83 |
-
"bigcodebench": BenchmarkSpec(
|
| 84 |
-
key="bigcodebench",
|
| 85 |
-
label="BigCodeBench",
|
| 86 |
-
aliases=("bigcodebench", "big code bench"),
|
| 87 |
-
),
|
| 88 |
-
"arc_mc": BenchmarkSpec(
|
| 89 |
-
key="arc_mc",
|
| 90 |
-
label="ARC MC",
|
| 91 |
-
aliases=(
|
| 92 |
-
"arc mc",
|
| 93 |
-
"arc-challenge",
|
| 94 |
-
"arc challenge",
|
| 95 |
-
"arc multiple choice",
|
| 96 |
-
"arc c",
|
| 97 |
-
),
|
| 98 |
-
),
|
| 99 |
-
}
|
| 100 |
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
class LeaderboardFetcher:
|
| 103 |
-
def __init__(self) -> None:
|
| 104 |
-
self.session = requests.Session()
|
| 105 |
-
self.session.headers.update({"User-Agent": USER_AGENT})
|
| 106 |
-
self.logs: List[str] = []
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
continue
|
| 115 |
-
scores = self._collect_scores(repo_id)
|
| 116 |
-
if scores["scores"]:
|
| 117 |
-
leaders.append(scores)
|
| 118 |
-
return self._compose_tables(leaders)
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
|
| 125 |
-
|
| 126 |
-
params = {"sort": "trendingScore", "limit": TRENDING_FETCH_LIMIT}
|
| 127 |
-
response = self.session.get(
|
| 128 |
-
f"{API_BASE}/models",
|
| 129 |
-
params=params,
|
| 130 |
-
timeout=30,
|
| 131 |
-
)
|
| 132 |
-
response.raise_for_status()
|
| 133 |
-
data = response.json()
|
| 134 |
-
if not isinstance(data, list):
|
| 135 |
-
raise ValueError("Unexpected trending response.")
|
| 136 |
-
filtered = [
|
| 137 |
-
model
|
| 138 |
-
for model in data
|
| 139 |
-
if (model.get("pipeline_tag") == PIPELINE_FILTER or PIPELINE_FILTER in (model.get("tags") or []))
|
| 140 |
-
]
|
| 141 |
-
if not filtered:
|
| 142 |
-
self.logs.append("⚠️ No text-generation models in trending feed.")
|
| 143 |
-
return []
|
| 144 |
-
limited = filtered[:TRENDING_LIMIT]
|
| 145 |
-
if len(limited) < TRENDING_LIMIT:
|
| 146 |
-
self.logs.append(f"⚠️ Only {len(limited)} text-generation models available.")
|
| 147 |
-
else:
|
| 148 |
-
self.logs.append(f"🔍 Loaded {TRENDING_LIMIT} trending text-generation models.")
|
| 149 |
-
return limited
|
| 150 |
-
|
| 151 |
-
def _collect_scores(self, repo_id: str) -> Dict[str, Any]:
|
| 152 |
-
owner = repo_id.split("/")[0]
|
| 153 |
-
card_meta = self._read_model_card(repo_id)
|
| 154 |
-
model_index = card_meta.get("model-index")
|
| 155 |
-
if model_index:
|
| 156 |
-
self.logs.append(f"✅ {repo_id}: model card metadata found.")
|
| 157 |
-
scores = self._extract_scores(
|
| 158 |
-
repo_id=repo_id,
|
| 159 |
-
model_index=model_index,
|
| 160 |
-
contributor=owner,
|
| 161 |
-
source_type="model-card",
|
| 162 |
-
source_url=f"https://huggingface.co/{repo_id}",
|
| 163 |
-
revision="main",
|
| 164 |
-
)
|
| 165 |
-
if scores:
|
| 166 |
-
return {"model_id": repo_id, "scores": scores}
|
| 167 |
-
|
| 168 |
-
prs = self._fetch_pull_requests(repo_id)
|
| 169 |
-
for pr in prs:
|
| 170 |
-
revision = f"refs/pr/{pr['num']}"
|
| 171 |
-
pr_meta = self._read_model_card(repo_id, revision=revision)
|
| 172 |
-
pr_index = pr_meta.get("model-index")
|
| 173 |
-
if not pr_index:
|
| 174 |
-
continue
|
| 175 |
-
author_info = pr.get("author", {}) or {}
|
| 176 |
-
contributor = author_info.get("name") or author_info.get("fullname") or "unknown-author"
|
| 177 |
-
discussion_path = f"{repo_id}/discussions/{pr['num']}"
|
| 178 |
-
source_url = f"https://huggingface.co/{discussion_path}"
|
| 179 |
-
scores = self._extract_scores(
|
| 180 |
-
repo_id=repo_id,
|
| 181 |
-
model_index=pr_index,
|
| 182 |
-
contributor=contributor,
|
| 183 |
-
source_type="pull-request",
|
| 184 |
-
source_url=source_url,
|
| 185 |
-
revision=revision,
|
| 186 |
-
)
|
| 187 |
-
if scores:
|
| 188 |
-
note = f"📝 {repo_id}: PR #{pr['num']} by {contributor}."
|
| 189 |
-
self.logs.append(note)
|
| 190 |
-
return {"model_id": repo_id, "scores": scores}
|
| 191 |
|
| 192 |
-
self.logs.append(f"⚠️ {repo_id}: no target benchmarks located.")
|
| 193 |
-
return {"model_id": repo_id, "scores": {}}
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
@staticmethod
|
| 215 |
-
def _parse_front_matter(content: str) -> Dict[str, Any]:
|
| 216 |
-
content = content.lstrip("\ufeff")
|
| 217 |
-
if not content.startswith("---"):
|
| 218 |
-
return {}
|
| 219 |
-
lines = content.splitlines()
|
| 220 |
-
end_idx = None
|
| 221 |
-
for idx, line in enumerate(lines[1:], start=1):
|
| 222 |
-
if line.strip() == "---":
|
| 223 |
-
end_idx = idx
|
| 224 |
-
break
|
| 225 |
-
if end_idx is None:
|
| 226 |
-
return {}
|
| 227 |
-
front_matter = "\n".join(lines[1:end_idx])
|
| 228 |
-
try:
|
| 229 |
-
data = yaml.safe_load(front_matter) or {}
|
| 230 |
-
return data if isinstance(data, dict) else {}
|
| 231 |
-
except yaml.YAMLError:
|
| 232 |
-
return {}
|
| 233 |
-
|
| 234 |
-
def _fetch_pull_requests(self, repo_id: str) -> List[Dict[str, Any]]:
|
| 235 |
-
url = f"{API_BASE}/models/{repo_id}/discussions"
|
| 236 |
-
try:
|
| 237 |
-
response = self.session.get(
|
| 238 |
-
url,
|
| 239 |
-
params={"limit": PR_SCAN_LIMIT},
|
| 240 |
-
timeout=30,
|
| 241 |
)
|
| 242 |
-
response.raise_for_status()
|
| 243 |
-
except requests.RequestException as err:
|
| 244 |
-
self.logs.append(f"🚫 {repo_id}: PR list request failed ({err}).")
|
| 245 |
-
return []
|
| 246 |
|
| 247 |
-
payload = response.json()
|
| 248 |
-
discussions = payload.get("discussions", [])
|
| 249 |
-
prs = [disc for disc in discussions if disc.get("isPullRequest")]
|
| 250 |
-
prs.sort(key=lambda item: item.get("createdAt", ""), reverse=True)
|
| 251 |
-
if prs:
|
| 252 |
-
self.logs.append(f"📬 {repo_id}: scanning {len(prs)} pull requests.")
|
| 253 |
-
return prs
|
| 254 |
-
|
| 255 |
-
def _extract_scores(
|
| 256 |
-
self,
|
| 257 |
-
repo_id: str,
|
| 258 |
-
model_index: Any,
|
| 259 |
-
contributor: str,
|
| 260 |
-
source_type: str,
|
| 261 |
-
source_url: str,
|
| 262 |
-
revision: str,
|
| 263 |
-
) -> Dict[str, Dict[str, Any]]:
|
| 264 |
-
if not isinstance(model_index, list):
|
| 265 |
-
return {}
|
| 266 |
-
scores: Dict[str, Dict[str, Any]] = {}
|
| 267 |
-
for entry in model_index:
|
| 268 |
-
if not isinstance(entry, dict):
|
| 269 |
-
continue
|
| 270 |
-
model_name = entry.get("name") or repo_id.split("/")[-1]
|
| 271 |
-
for result in entry.get("results", []):
|
| 272 |
-
dataset_info = result.get("dataset") or {}
|
| 273 |
-
dataset_name = dataset_info.get("name")
|
| 274 |
-
dataset_type = dataset_info.get("type")
|
| 275 |
-
task_info = result.get("task") or {}
|
| 276 |
-
task_type = task_info.get("type")
|
| 277 |
-
for metric in result.get("metrics", []):
|
| 278 |
-
benchmark_key = self._match_benchmark(
|
| 279 |
-
dataset_name,
|
| 280 |
-
dataset_type,
|
| 281 |
-
metric,
|
| 282 |
-
)
|
| 283 |
-
if not benchmark_key:
|
| 284 |
-
continue
|
| 285 |
-
raw_value = metric.get("value")
|
| 286 |
-
value = _coerce_score(raw_value)
|
| 287 |
-
if value is None:
|
| 288 |
-
continue
|
| 289 |
-
unit = metric.get("unit") or ""
|
| 290 |
-
is_pct = isinstance(raw_value, str) and raw_value.strip().endswith("%")
|
| 291 |
-
if not unit and is_pct:
|
| 292 |
-
unit = "%"
|
| 293 |
-
metric_name = metric.get("name") or metric.get("type") or ""
|
| 294 |
-
payload = {
|
| 295 |
-
"model": repo_id,
|
| 296 |
-
"model_name": model_name,
|
| 297 |
-
"benchmark_key": benchmark_key,
|
| 298 |
-
"benchmark_label": BENCHMARKS[benchmark_key].label,
|
| 299 |
-
"value": value,
|
| 300 |
-
"unit": unit,
|
| 301 |
-
"dataset": dataset_name or dataset_type or "",
|
| 302 |
-
"task_type": task_type or "",
|
| 303 |
-
"metric_name": metric_name,
|
| 304 |
-
"contributor": contributor,
|
| 305 |
-
"source_type": source_type,
|
| 306 |
-
"source_url": source_url,
|
| 307 |
-
"revision": revision,
|
| 308 |
-
}
|
| 309 |
-
existing = scores.get(benchmark_key)
|
| 310 |
-
if not existing or value > existing["value"]:
|
| 311 |
-
scores[benchmark_key] = payload
|
| 312 |
-
return scores
|
| 313 |
-
|
| 314 |
-
def _match_benchmark(
|
| 315 |
-
self,
|
| 316 |
-
dataset_name: Optional[str],
|
| 317 |
-
dataset_type: Optional[str],
|
| 318 |
-
metric: Dict[str, Any],
|
| 319 |
-
) -> Optional[str]:
|
| 320 |
-
fields = [
|
| 321 |
-
_normalize(dataset_name),
|
| 322 |
-
_normalize(dataset_type),
|
| 323 |
-
_normalize(metric.get("name")),
|
| 324 |
-
_normalize(metric.get("type")),
|
| 325 |
-
]
|
| 326 |
-
fields = [field for field in fields if field]
|
| 327 |
-
for key, spec in BENCHMARKS.items():
|
| 328 |
-
if spec.matches(fields):
|
| 329 |
-
return key
|
| 330 |
-
return None
|
| 331 |
-
|
| 332 |
-
def _compose_tables(self, entries: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 333 |
-
all_rows: List[Dict[str, Any]] = []
|
| 334 |
-
per_benchmark: Dict[str, List[Dict[str, Any]]] = {key: [] for key in BENCHMARKS}
|
| 335 |
-
for entry in entries:
|
| 336 |
-
for benchmark_key, payload in entry["scores"].items():
|
| 337 |
-
row = {
|
| 338 |
-
"Model": entry["model_id"],
|
| 339 |
-
"Benchmark": BENCHMARKS[benchmark_key].label,
|
| 340 |
-
"Score": round(payload["value"], 2),
|
| 341 |
-
"Source": f"{payload['source_type']} by [{payload['contributor']}]({payload['source_url']})",
|
| 342 |
-
}
|
| 343 |
-
all_rows.append(row)
|
| 344 |
-
per_benchmark[benchmark_key].append(row)
|
| 345 |
-
|
| 346 |
-
for rows in per_benchmark.values():
|
| 347 |
-
rows.sort(key=lambda r: r["Score"], reverse=True)
|
| 348 |
-
all_rows.sort(key=lambda r: r["Score"], reverse=True)
|
| 349 |
-
|
| 350 |
-
return {
|
| 351 |
-
"all_rows": all_rows,
|
| 352 |
-
"per_benchmark": per_benchmark,
|
| 353 |
-
"stats": {
|
| 354 |
-
"models_with_scores": len(entries),
|
| 355 |
-
"row_count": len(all_rows),
|
| 356 |
-
"generated_at": datetime.now(timezone.utc).isoformat(),
|
| 357 |
-
},
|
| 358 |
-
}
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
def _rows_to_matrix(rows: List[Dict[str, Any]]) -> List[List[Any]]:
|
| 362 |
-
return [[row.get(header, "") for header in TABLE_HEADERS] for row in rows]
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
def refresh_handler() -> List[Any]:
|
| 366 |
-
fetcher = LeaderboardFetcher()
|
| 367 |
-
try:
|
| 368 |
-
result = fetcher.build()
|
| 369 |
-
stats = result["stats"]
|
| 370 |
status = "\n".join(
|
| 371 |
[
|
| 372 |
-
f"
|
| 373 |
-
f"
|
| 374 |
-
f"
|
| 375 |
-
"",
|
| 376 |
-
fetcher.log_text(),
|
| 377 |
]
|
| 378 |
)
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
error = f"❌ Failed to refresh leaderboard: {exc}"
|
| 385 |
-
empty: List[List[Any]] = []
|
| 386 |
-
return [error, empty]
|
| 387 |
|
| 388 |
|
| 389 |
-
with gr.Blocks(
|
| 390 |
gr.Markdown(
|
| 391 |
"""
|
| 392 |
-
# HF Evaluation Leaderboard
|
|
|
|
| 393 |
Shows MMLU, BigCodeBench, and ARC MC scores pulled from model-index
|
| 394 |
-
metadata or their pull requests for
|
| 395 |
"""
|
| 396 |
)
|
| 397 |
-
refresh_button = gr.Button("Refresh", variant="primary")
|
| 398 |
-
status_box = gr.Markdown("")
|
| 399 |
|
| 400 |
-
|
| 401 |
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
all_table,
|
| 408 |
-
],
|
| 409 |
)
|
| 410 |
-
|
|
|
|
| 411 |
refresh_handler,
|
| 412 |
-
outputs=[
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
)
|
| 417 |
|
| 418 |
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Evals Leaderboard - Gradio app for displaying model evaluation scores.
|
| 4 |
+
|
| 5 |
+
Reads leaderboard data from the hf-skills/evals-leaderboard dataset.
|
| 6 |
+
Run collect_evals.py separately to update the dataset.
|
| 7 |
+
|
| 8 |
+
Usage:
|
| 9 |
+
python app.py
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
from __future__ import annotations
|
| 13 |
|
| 14 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
import gradio as gr
|
| 17 |
import requests
|
|
|
|
|
|
|
|
|
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
TABLE_HEADERS = [
|
| 20 |
"Model",
|
| 21 |
"Benchmark",
|
|
|
|
| 24 |
]
|
| 25 |
|
| 26 |
TABLE_DATATYPES = [
|
| 27 |
+
"markdown",
|
| 28 |
"text",
|
| 29 |
"number",
|
| 30 |
"markdown",
|
| 31 |
]
|
| 32 |
|
| 33 |
|
| 34 |
+
DATASET_REPO = "hf-skills/evals-leaderboard"
|
| 35 |
+
LEADERBOARD_URL = f"https://huggingface.co/datasets/{DATASET_REPO}/raw/main/data/leaderboard.jsonl"
|
| 36 |
+
METADATA_URL = f"https://huggingface.co/datasets/{DATASET_REPO}/raw/main/data/metadata.json"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
def format_model_link(model_id: str) -> str:
|
| 40 |
+
"""Format model ID as a clickable link."""
|
| 41 |
+
return f"[{model_id}](https://huggingface.co/{model_id})"
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
def format_source_link(source_type: str, contributor: str, source_url: str) -> str:
|
| 45 |
+
"""Format source as a clickable link."""
|
| 46 |
+
return f"{source_type} by [{contributor}]({source_url})"
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
def fetch_leaderboard() -> tuple[list[dict], dict]:
|
| 50 |
+
"""Fetch leaderboard data from the HF dataset."""
|
| 51 |
+
# Fetch leaderboard JSONL
|
| 52 |
+
resp = requests.get(LEADERBOARD_URL, timeout=30)
|
| 53 |
+
resp.raise_for_status()
|
| 54 |
+
leaderboard = [json.loads(line) for line in resp.text.strip().split("\n") if line]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
# Fetch metadata
|
| 57 |
+
resp = requests.get(METADATA_URL, timeout=30)
|
| 58 |
+
resp.raise_for_status()
|
| 59 |
+
metadata = resp.json()
|
| 60 |
|
| 61 |
+
return leaderboard, metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
def refresh_handler() -> tuple[str, list[list]]:
|
| 65 |
+
"""Refresh the leaderboard data from the dataset."""
|
| 66 |
+
try:
|
| 67 |
+
leaderboard, metadata = fetch_leaderboard()
|
| 68 |
+
|
| 69 |
+
# Build table rows
|
| 70 |
+
rows = []
|
| 71 |
+
for entry in leaderboard:
|
| 72 |
+
rows.append(
|
| 73 |
+
[
|
| 74 |
+
format_model_link(entry["model_id"]),
|
| 75 |
+
entry["benchmark"],
|
| 76 |
+
entry["score"],
|
| 77 |
+
format_source_link(
|
| 78 |
+
entry["source_type"],
|
| 79 |
+
entry["contributor"],
|
| 80 |
+
entry["source_url"],
|
| 81 |
+
),
|
| 82 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
status = "\n".join(
|
| 86 |
[
|
| 87 |
+
f"**Data from:** [{DATASET_REPO}](https://huggingface.co/datasets/{DATASET_REPO})",
|
| 88 |
+
f"**Last updated:** {metadata.get('generated_at', 'unknown')}",
|
| 89 |
+
f"**Models with scores:** {metadata.get('models_with_scores', 'unknown')}",
|
| 90 |
+
f"**Total entries:** {metadata.get('total_entries', len(leaderboard))}",
|
|
|
|
| 91 |
]
|
| 92 |
)
|
| 93 |
+
|
| 94 |
+
return status, rows
|
| 95 |
+
|
| 96 |
+
except Exception as e:
|
| 97 |
+
return f"❌ Failed to load leaderboard: {e}", []
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
|
| 100 |
+
with gr.Blocks() as demo:
|
| 101 |
gr.Markdown(
|
| 102 |
"""
|
| 103 |
+
# 📊 HF Evaluation Leaderboard
|
| 104 |
+
|
| 105 |
Shows MMLU, BigCodeBench, and ARC MC scores pulled from model-index
|
| 106 |
+
metadata or their pull requests for trending text-generation models.
|
| 107 |
"""
|
| 108 |
)
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
status_box = gr.Markdown("Loading leaderboard...")
|
| 111 |
|
| 112 |
+
leaderboard_table = gr.Dataframe(
|
| 113 |
+
headers=TABLE_HEADERS,
|
| 114 |
+
datatype=TABLE_DATATYPES,
|
| 115 |
+
interactive=False,
|
| 116 |
+
wrap=True,
|
|
|
|
|
|
|
| 117 |
)
|
| 118 |
+
|
| 119 |
+
demo.load(
|
| 120 |
refresh_handler,
|
| 121 |
+
outputs=[status_box, leaderboard_table],
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
gr.Markdown(
|
| 125 |
+
f"""
|
| 126 |
+
---
|
| 127 |
+
|
| 128 |
+
**Links:**
|
| 129 |
+
- [Dataset: {DATASET_REPO}](https://huggingface.co/datasets/{DATASET_REPO})
|
| 130 |
+
- [GitHub Repository](https://github.com/huggingface/skills)
|
| 131 |
+
"""
|
| 132 |
)
|
| 133 |
|
| 134 |
|
collect_evals.py
ADDED
|
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Collect evaluation scores from trending models' model-index metadata.
|
| 4 |
+
|
| 5 |
+
Scans trending text-generation models on the Hub and extracts benchmark
|
| 6 |
+
scores from their model-index metadata or open pull requests.
|
| 7 |
+
|
| 8 |
+
Results are saved to a dataset for the evals leaderboard.
|
| 9 |
+
|
| 10 |
+
Usage:
|
| 11 |
+
python collect_evals.py [--push-to-hub]
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
from __future__ import annotations
|
| 15 |
+
|
| 16 |
+
import argparse
|
| 17 |
+
import json
|
| 18 |
+
import os
|
| 19 |
+
import re
|
| 20 |
+
from dataclasses import dataclass
|
| 21 |
+
from datetime import datetime, timezone
|
| 22 |
+
from pathlib import Path
|
| 23 |
+
from typing import Any, Dict, List, Optional
|
| 24 |
+
|
| 25 |
+
import requests
|
| 26 |
+
import yaml
|
| 27 |
+
from huggingface_hub import hf_hub_download
|
| 28 |
+
from huggingface_hub.utils import HfHubHTTPError
|
| 29 |
+
|
| 30 |
+
API_BASE = "https://huggingface.co/api"
|
| 31 |
+
PIPELINE_FILTER = "text-generation"
|
| 32 |
+
TRENDING_LIMIT = 50
|
| 33 |
+
TRENDING_FETCH_LIMIT = 100
|
| 34 |
+
PR_SCAN_LIMIT = 40
|
| 35 |
+
USER_AGENT = "skills-evals-leaderboard/0.3"
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def _normalize(text: Optional[str]) -> str:
|
| 39 |
+
if not text:
|
| 40 |
+
return ""
|
| 41 |
+
text = text.lower()
|
| 42 |
+
text = re.sub(r"[^a-z0-9]+", " ", text)
|
| 43 |
+
return text.strip()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def _coerce_score(value: Any) -> Optional[float]:
|
| 47 |
+
if value is None:
|
| 48 |
+
return None
|
| 49 |
+
if isinstance(value, (int, float)):
|
| 50 |
+
return float(value)
|
| 51 |
+
if isinstance(value, str):
|
| 52 |
+
candidate = value.strip()
|
| 53 |
+
if candidate.endswith("%"):
|
| 54 |
+
candidate = candidate[:-1]
|
| 55 |
+
try:
|
| 56 |
+
return float(candidate)
|
| 57 |
+
except ValueError:
|
| 58 |
+
return None
|
| 59 |
+
return None
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@dataclass(frozen=True)
|
| 63 |
+
class BenchmarkSpec:
|
| 64 |
+
key: str
|
| 65 |
+
label: str
|
| 66 |
+
aliases: tuple[str, ...]
|
| 67 |
+
|
| 68 |
+
def matches(self, fields: List[str]) -> bool:
|
| 69 |
+
for alias in self.aliases:
|
| 70 |
+
alias_norm = _normalize(alias)
|
| 71 |
+
if not alias_norm:
|
| 72 |
+
continue
|
| 73 |
+
for field in fields:
|
| 74 |
+
if alias_norm in field:
|
| 75 |
+
return True
|
| 76 |
+
return False
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
BENCHMARKS: Dict[str, BenchmarkSpec] = {
|
| 80 |
+
"mmlu": BenchmarkSpec(
|
| 81 |
+
key="mmlu",
|
| 82 |
+
label="MMLU",
|
| 83 |
+
aliases=("mmlu", "massive multitask language understanding"),
|
| 84 |
+
),
|
| 85 |
+
"bigcodebench": BenchmarkSpec(
|
| 86 |
+
key="bigcodebench",
|
| 87 |
+
label="BigCodeBench",
|
| 88 |
+
aliases=("bigcodebench", "big code bench"),
|
| 89 |
+
),
|
| 90 |
+
"arc_mc": BenchmarkSpec(
|
| 91 |
+
key="arc_mc",
|
| 92 |
+
label="ARC MC",
|
| 93 |
+
aliases=(
|
| 94 |
+
"arc mc",
|
| 95 |
+
"arc-challenge",
|
| 96 |
+
"arc challenge",
|
| 97 |
+
"arc multiple choice",
|
| 98 |
+
"arc c",
|
| 99 |
+
),
|
| 100 |
+
),
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class EvalsCollector:
|
| 105 |
+
"""Collects evaluation scores from model-index metadata."""
|
| 106 |
+
|
| 107 |
+
def __init__(self, token: str | None = None) -> None:
|
| 108 |
+
self.token = token
|
| 109 |
+
self.session = requests.Session()
|
| 110 |
+
self.session.headers.update({"User-Agent": USER_AGENT})
|
| 111 |
+
if token:
|
| 112 |
+
self.session.headers.update({"Authorization": f"Bearer {token}"})
|
| 113 |
+
self.logs: List[str] = []
|
| 114 |
+
self.results: List[Dict[str, Any]] = []
|
| 115 |
+
|
| 116 |
+
def log(self, message: str) -> None:
|
| 117 |
+
"""Add a log message."""
|
| 118 |
+
print(message)
|
| 119 |
+
self.logs.append(message)
|
| 120 |
+
|
| 121 |
+
def collect_all(self) -> List[Dict[str, Any]]:
|
| 122 |
+
"""Collect evaluation scores from trending models."""
|
| 123 |
+
self.log("🔍 Fetching trending text-generation models...")
|
| 124 |
+
trending = self._fetch_trending_models()
|
| 125 |
+
|
| 126 |
+
for entry in trending:
|
| 127 |
+
repo_id = entry.get("modelId") or entry.get("id")
|
| 128 |
+
if not repo_id:
|
| 129 |
+
continue
|
| 130 |
+
scores = self._collect_scores(repo_id)
|
| 131 |
+
if scores["scores"]:
|
| 132 |
+
self.results.extend(self._format_scores(repo_id, scores["scores"]))
|
| 133 |
+
|
| 134 |
+
self.log(f"✅ Collected {len(self.results)} evaluation entries")
|
| 135 |
+
return self.results
|
| 136 |
+
|
| 137 |
+
def _fetch_trending_models(self) -> List[Dict[str, Any]]:
|
| 138 |
+
params = {"sort": "trendingScore", "limit": TRENDING_FETCH_LIMIT}
|
| 139 |
+
response = self.session.get(
|
| 140 |
+
f"{API_BASE}/models",
|
| 141 |
+
params=params,
|
| 142 |
+
timeout=30,
|
| 143 |
+
)
|
| 144 |
+
response.raise_for_status()
|
| 145 |
+
data = response.json()
|
| 146 |
+
if not isinstance(data, list):
|
| 147 |
+
raise ValueError("Unexpected trending response.")
|
| 148 |
+
filtered = [
|
| 149 |
+
model
|
| 150 |
+
for model in data
|
| 151 |
+
if (model.get("pipeline_tag") == PIPELINE_FILTER or PIPELINE_FILTER in (model.get("tags") or []))
|
| 152 |
+
]
|
| 153 |
+
if not filtered:
|
| 154 |
+
self.log("⚠️ No text-generation models in trending feed.")
|
| 155 |
+
return []
|
| 156 |
+
limited = filtered[:TRENDING_LIMIT]
|
| 157 |
+
self.log(f"📊 Found {len(limited)} trending text-generation models")
|
| 158 |
+
return limited
|
| 159 |
+
|
| 160 |
+
def _collect_scores(self, repo_id: str) -> Dict[str, Any]:
|
| 161 |
+
owner = repo_id.split("/")[0]
|
| 162 |
+
card_meta = self._read_model_card(repo_id)
|
| 163 |
+
model_index = card_meta.get("model-index")
|
| 164 |
+
if model_index:
|
| 165 |
+
self.log(f"✅ {repo_id}: model card metadata found.")
|
| 166 |
+
scores = self._extract_scores(
|
| 167 |
+
repo_id=repo_id,
|
| 168 |
+
model_index=model_index,
|
| 169 |
+
contributor=owner,
|
| 170 |
+
source_type="model-card",
|
| 171 |
+
source_url=f"https://huggingface.co/{repo_id}",
|
| 172 |
+
revision="main",
|
| 173 |
+
)
|
| 174 |
+
if scores:
|
| 175 |
+
return {"model_id": repo_id, "scores": scores}
|
| 176 |
+
|
| 177 |
+
prs = self._fetch_pull_requests(repo_id)
|
| 178 |
+
for pr in prs:
|
| 179 |
+
revision = f"refs/pr/{pr['num']}"
|
| 180 |
+
pr_meta = self._read_model_card(repo_id, revision=revision)
|
| 181 |
+
pr_index = pr_meta.get("model-index")
|
| 182 |
+
if not pr_index:
|
| 183 |
+
continue
|
| 184 |
+
author_info = pr.get("author", {}) or {}
|
| 185 |
+
contributor = author_info.get("name") or author_info.get("fullname") or "unknown-author"
|
| 186 |
+
discussion_path = f"{repo_id}/discussions/{pr['num']}"
|
| 187 |
+
source_url = f"https://huggingface.co/{discussion_path}"
|
| 188 |
+
scores = self._extract_scores(
|
| 189 |
+
repo_id=repo_id,
|
| 190 |
+
model_index=pr_index,
|
| 191 |
+
contributor=contributor,
|
| 192 |
+
source_type="pull-request",
|
| 193 |
+
source_url=source_url,
|
| 194 |
+
revision=revision,
|
| 195 |
+
)
|
| 196 |
+
if scores:
|
| 197 |
+
note = f"📝 {repo_id}: PR #{pr['num']} by {contributor}."
|
| 198 |
+
self.log(note)
|
| 199 |
+
return {"model_id": repo_id, "scores": scores}
|
| 200 |
+
|
| 201 |
+
self.log(f"⚠️ {repo_id}: no target benchmarks located.")
|
| 202 |
+
return {"model_id": repo_id, "scores": {}}
|
| 203 |
+
|
| 204 |
+
def _read_model_card(
|
| 205 |
+
self,
|
| 206 |
+
repo_id: str,
|
| 207 |
+
revision: Optional[str] = None,
|
| 208 |
+
) -> Dict[str, Any]:
|
| 209 |
+
try:
|
| 210 |
+
path = hf_hub_download(
|
| 211 |
+
repo_id=repo_id,
|
| 212 |
+
filename="README.md",
|
| 213 |
+
repo_type="model",
|
| 214 |
+
revision=revision,
|
| 215 |
+
token=self.token,
|
| 216 |
+
)
|
| 217 |
+
except HfHubHTTPError as err:
|
| 218 |
+
ctx = f"{repo_id} ({revision or 'main'})"
|
| 219 |
+
self.log(f"🚫 {ctx}: README download failed ({err}).")
|
| 220 |
+
return {}
|
| 221 |
+
text = Path(path).read_text(encoding="utf-8", errors="ignore")
|
| 222 |
+
return self._parse_front_matter(text)
|
| 223 |
+
|
| 224 |
+
@staticmethod
|
| 225 |
+
def _parse_front_matter(content: str) -> Dict[str, Any]:
|
| 226 |
+
content = content.lstrip("\ufeff")
|
| 227 |
+
if not content.startswith("---"):
|
| 228 |
+
return {}
|
| 229 |
+
lines = content.splitlines()
|
| 230 |
+
end_idx = None
|
| 231 |
+
for idx, line in enumerate(lines[1:], start=1):
|
| 232 |
+
if line.strip() == "---":
|
| 233 |
+
end_idx = idx
|
| 234 |
+
break
|
| 235 |
+
if end_idx is None:
|
| 236 |
+
return {}
|
| 237 |
+
front_matter = "\n".join(lines[1:end_idx])
|
| 238 |
+
try:
|
| 239 |
+
data = yaml.safe_load(front_matter) or {}
|
| 240 |
+
return data if isinstance(data, dict) else {}
|
| 241 |
+
except yaml.YAMLError:
|
| 242 |
+
return {}
|
| 243 |
+
|
| 244 |
+
def _fetch_pull_requests(self, repo_id: str) -> List[Dict[str, Any]]:
|
| 245 |
+
url = f"{API_BASE}/models/{repo_id}/discussions"
|
| 246 |
+
try:
|
| 247 |
+
response = self.session.get(
|
| 248 |
+
url,
|
| 249 |
+
params={"limit": PR_SCAN_LIMIT},
|
| 250 |
+
timeout=30,
|
| 251 |
+
)
|
| 252 |
+
response.raise_for_status()
|
| 253 |
+
except requests.RequestException as err:
|
| 254 |
+
self.log(f"🚫 {repo_id}: PR list request failed ({err}).")
|
| 255 |
+
return []
|
| 256 |
+
|
| 257 |
+
payload = response.json()
|
| 258 |
+
discussions = payload.get("discussions", [])
|
| 259 |
+
prs = [disc for disc in discussions if disc.get("isPullRequest")]
|
| 260 |
+
prs.sort(key=lambda item: item.get("createdAt", ""), reverse=True)
|
| 261 |
+
if prs:
|
| 262 |
+
self.log(f"📬 {repo_id}: scanning {len(prs)} pull requests.")
|
| 263 |
+
return prs
|
| 264 |
+
|
| 265 |
+
def _extract_scores(
|
| 266 |
+
self,
|
| 267 |
+
repo_id: str,
|
| 268 |
+
model_index: Any,
|
| 269 |
+
contributor: str,
|
| 270 |
+
source_type: str,
|
| 271 |
+
source_url: str,
|
| 272 |
+
revision: str,
|
| 273 |
+
) -> Dict[str, Dict[str, Any]]:
|
| 274 |
+
if not isinstance(model_index, list):
|
| 275 |
+
return {}
|
| 276 |
+
scores: Dict[str, Dict[str, Any]] = {}
|
| 277 |
+
for entry in model_index:
|
| 278 |
+
if not isinstance(entry, dict):
|
| 279 |
+
continue
|
| 280 |
+
model_name = entry.get("name") or repo_id.split("/")[-1]
|
| 281 |
+
for result in entry.get("results", []):
|
| 282 |
+
dataset_info = result.get("dataset") or {}
|
| 283 |
+
dataset_name = dataset_info.get("name")
|
| 284 |
+
dataset_type = dataset_info.get("type")
|
| 285 |
+
task_info = result.get("task") or {}
|
| 286 |
+
task_type = task_info.get("type")
|
| 287 |
+
for metric in result.get("metrics", []):
|
| 288 |
+
benchmark_key = self._match_benchmark(
|
| 289 |
+
dataset_name,
|
| 290 |
+
dataset_type,
|
| 291 |
+
metric,
|
| 292 |
+
)
|
| 293 |
+
if not benchmark_key:
|
| 294 |
+
continue
|
| 295 |
+
raw_value = metric.get("value")
|
| 296 |
+
value = _coerce_score(raw_value)
|
| 297 |
+
if value is None:
|
| 298 |
+
continue
|
| 299 |
+
unit = metric.get("unit") or ""
|
| 300 |
+
is_pct = isinstance(raw_value, str) and raw_value.strip().endswith("%")
|
| 301 |
+
if not unit and is_pct:
|
| 302 |
+
unit = "%"
|
| 303 |
+
metric_name = metric.get("name") or metric.get("type") or ""
|
| 304 |
+
payload = {
|
| 305 |
+
"model": repo_id,
|
| 306 |
+
"model_name": model_name,
|
| 307 |
+
"benchmark_key": benchmark_key,
|
| 308 |
+
"benchmark_label": BENCHMARKS[benchmark_key].label,
|
| 309 |
+
"value": value,
|
| 310 |
+
"unit": unit,
|
| 311 |
+
"dataset": dataset_name or dataset_type or "",
|
| 312 |
+
"task_type": task_type or "",
|
| 313 |
+
"metric_name": metric_name,
|
| 314 |
+
"contributor": contributor,
|
| 315 |
+
"source_type": source_type,
|
| 316 |
+
"source_url": source_url,
|
| 317 |
+
"revision": revision,
|
| 318 |
+
}
|
| 319 |
+
existing = scores.get(benchmark_key)
|
| 320 |
+
if not existing or value > existing["value"]:
|
| 321 |
+
scores[benchmark_key] = payload
|
| 322 |
+
return scores
|
| 323 |
+
|
| 324 |
+
def _match_benchmark(
|
| 325 |
+
self,
|
| 326 |
+
dataset_name: Optional[str],
|
| 327 |
+
dataset_type: Optional[str],
|
| 328 |
+
metric: Dict[str, Any],
|
| 329 |
+
) -> Optional[str]:
|
| 330 |
+
fields = [
|
| 331 |
+
_normalize(dataset_name),
|
| 332 |
+
_normalize(dataset_type),
|
| 333 |
+
_normalize(metric.get("name")),
|
| 334 |
+
_normalize(metric.get("type")),
|
| 335 |
+
]
|
| 336 |
+
fields = [field for field in fields if field]
|
| 337 |
+
for key, spec in BENCHMARKS.items():
|
| 338 |
+
if spec.matches(fields):
|
| 339 |
+
return key
|
| 340 |
+
return None
|
| 341 |
+
|
| 342 |
+
def _format_scores(self, model_id: str, scores: Dict[str, Dict[str, Any]]) -> List[Dict[str, Any]]:
|
| 343 |
+
"""Format scores as flat records for the dataset."""
|
| 344 |
+
rows = []
|
| 345 |
+
for benchmark_key, payload in scores.items():
|
| 346 |
+
rows.append(
|
| 347 |
+
{
|
| 348 |
+
"model_id": model_id,
|
| 349 |
+
"benchmark": payload["benchmark_label"],
|
| 350 |
+
"benchmark_key": benchmark_key,
|
| 351 |
+
"score": round(payload["value"], 2),
|
| 352 |
+
"source_type": payload["source_type"],
|
| 353 |
+
"source_url": payload["source_url"],
|
| 354 |
+
"contributor": payload["contributor"],
|
| 355 |
+
"collected_at": datetime.now(timezone.utc).isoformat(),
|
| 356 |
+
}
|
| 357 |
+
)
|
| 358 |
+
return rows
|
| 359 |
+
|
| 360 |
+
def get_leaderboard(self) -> List[Dict[str, Any]]:
|
| 361 |
+
"""Get results sorted by score descending."""
|
| 362 |
+
return sorted(self.results, key=lambda x: x["score"], reverse=True)
|
| 363 |
+
|
| 364 |
+
def save_json(self, filepath: str) -> None:
|
| 365 |
+
"""Save the leaderboard to a JSON file."""
|
| 366 |
+
leaderboard = self.get_leaderboard()
|
| 367 |
+
output = {
|
| 368 |
+
"generated_at": datetime.now(timezone.utc).isoformat(),
|
| 369 |
+
"total_entries": len(leaderboard),
|
| 370 |
+
"benchmarks": list(BENCHMARKS.keys()),
|
| 371 |
+
"leaderboard": leaderboard,
|
| 372 |
+
}
|
| 373 |
+
with open(filepath, "w") as f:
|
| 374 |
+
json.dump(output, f, indent=2)
|
| 375 |
+
self.log(f"💾 Saved leaderboard to {filepath}")
|
| 376 |
+
|
| 377 |
+
def push_to_hub(self, repo_id: str = "hf-skills/evals-leaderboard") -> None:
|
| 378 |
+
"""Push the leaderboard data to a HF dataset."""
|
| 379 |
+
try:
|
| 380 |
+
from huggingface_hub import HfApi
|
| 381 |
+
except ImportError:
|
| 382 |
+
self.log("❌ huggingface_hub not installed. Run: pip install huggingface_hub")
|
| 383 |
+
return
|
| 384 |
+
|
| 385 |
+
api = HfApi(token=self.token)
|
| 386 |
+
leaderboard = self.get_leaderboard()
|
| 387 |
+
|
| 388 |
+
# Create dataset as JSONL
|
| 389 |
+
jsonl_content = "\n".join(json.dumps(row) for row in leaderboard)
|
| 390 |
+
|
| 391 |
+
# Create metadata file
|
| 392 |
+
metadata = {
|
| 393 |
+
"generated_at": datetime.now(timezone.utc).isoformat(),
|
| 394 |
+
"total_entries": len(leaderboard),
|
| 395 |
+
"models_with_scores": len(set(r["model_id"] for r in leaderboard)),
|
| 396 |
+
"benchmarks": list(BENCHMARKS.keys()),
|
| 397 |
+
}
|
| 398 |
+
|
| 399 |
+
try:
|
| 400 |
+
# Create repo if it doesn't exist
|
| 401 |
+
api.create_repo(repo_id=repo_id, repo_type="dataset", exist_ok=True)
|
| 402 |
+
self.log(f"📁 Ensured dataset repo exists: {repo_id}")
|
| 403 |
+
|
| 404 |
+
# Upload leaderboard data
|
| 405 |
+
api.upload_file(
|
| 406 |
+
path_or_fileobj=jsonl_content.encode(),
|
| 407 |
+
path_in_repo="data/leaderboard.jsonl",
|
| 408 |
+
repo_id=repo_id,
|
| 409 |
+
repo_type="dataset",
|
| 410 |
+
commit_message=f"Update leaderboard - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M')} UTC",
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
# Upload metadata
|
| 414 |
+
api.upload_file(
|
| 415 |
+
path_or_fileobj=json.dumps(metadata, indent=2).encode(),
|
| 416 |
+
path_in_repo="data/metadata.json",
|
| 417 |
+
repo_id=repo_id,
|
| 418 |
+
repo_type="dataset",
|
| 419 |
+
commit_message=f"Update metadata - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M')} UTC",
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
self.log(f"🚀 Pushed leaderboard to {repo_id}")
|
| 423 |
+
except Exception as e:
|
| 424 |
+
self.log(f"❌ Failed to push to hub: {e}")
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
def main() -> None:
|
| 428 |
+
parser = argparse.ArgumentParser(description="Collect evaluation scores from model-index metadata")
|
| 429 |
+
parser.add_argument(
|
| 430 |
+
"--push-to-hub",
|
| 431 |
+
action="store_true",
|
| 432 |
+
help="Push results to HF dataset",
|
| 433 |
+
)
|
| 434 |
+
parser.add_argument(
|
| 435 |
+
"--output",
|
| 436 |
+
type=str,
|
| 437 |
+
default="leaderboard.json",
|
| 438 |
+
help="Output JSON file path",
|
| 439 |
+
)
|
| 440 |
+
parser.add_argument(
|
| 441 |
+
"--repo-id",
|
| 442 |
+
type=str,
|
| 443 |
+
default="hf-skills/evals-leaderboard",
|
| 444 |
+
help="HF dataset repo ID for pushing",
|
| 445 |
+
)
|
| 446 |
+
args = parser.parse_args()
|
| 447 |
+
|
| 448 |
+
token = os.environ.get("HF_TOKEN")
|
| 449 |
+
if not token:
|
| 450 |
+
print("⚠️ No HF_TOKEN found. Some requests may be rate-limited.")
|
| 451 |
+
|
| 452 |
+
collector = EvalsCollector(token=token)
|
| 453 |
+
collector.collect_all()
|
| 454 |
+
|
| 455 |
+
# Print leaderboard summary
|
| 456 |
+
print("\n" + "=" * 60)
|
| 457 |
+
print("📊 EVALUATION LEADERBOARD")
|
| 458 |
+
print("=" * 60)
|
| 459 |
+
|
| 460 |
+
leaderboard = collector.get_leaderboard()
|
| 461 |
+
for entry in leaderboard[:20]:
|
| 462 |
+
print(f"{entry['model_id']:40} | {entry['benchmark']:12} | {entry['score']:6.2f}")
|
| 463 |
+
|
| 464 |
+
if len(leaderboard) > 20:
|
| 465 |
+
print(f" ... and {len(leaderboard) - 20} more entries")
|
| 466 |
+
|
| 467 |
+
print("=" * 60)
|
| 468 |
+
print(f"Total entries: {len(leaderboard)}")
|
| 469 |
+
print(f"Models with scores: {len(set(r['model_id'] for r in leaderboard))}")
|
| 470 |
+
|
| 471 |
+
# Save locally
|
| 472 |
+
collector.save_json(args.output)
|
| 473 |
+
|
| 474 |
+
# Push to hub if requested
|
| 475 |
+
if args.push_to_hub:
|
| 476 |
+
collector.push_to_hub(args.repo_id)
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
if __name__ == "__main__":
|
| 480 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
requests
|
| 3 |
+
pyyaml
|
| 4 |
+
huggingface_hub
|
| 5 |
+
|