Spaces:
Sleeping
Sleeping
add reset_model_cache to prevent memory leak, force cpu_only and disable 8-bit quant for Phi-4
Browse files
app.py
CHANGED
|
@@ -107,20 +107,24 @@ performance_tracker = PerformanceTracker()
|
|
| 107 |
|
| 108 |
def initialize_model_once(model_key):
|
| 109 |
with MODEL_CACHE["init_lock"]:
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
|
|
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
-
try:
|
| 124 |
print(f"Loading model: {model_name}")
|
| 125 |
|
| 126 |
# Check if this is a GGUF model
|
|
@@ -169,22 +173,30 @@ def initialize_model_once(model_key):
|
|
| 169 |
low_cpu_mem_usage=True
|
| 170 |
)
|
| 171 |
MODEL_CACHE["is_gguf"] = False
|
| 172 |
-
|
| 173 |
-
#
|
| 174 |
-
elif
|
| 175 |
-
# Reduce memory footprint
|
| 176 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:64"
|
| 177 |
-
|
| 178 |
-
# For CPU-only environments, load with 8-bit quantization
|
| 179 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 180 |
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 181 |
model_name,
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
low_cpu_mem_usage=True,
|
| 185 |
trust_remote_code=True
|
| 186 |
)
|
| 187 |
-
MODEL_CACHE["is_gguf"] = False
|
| 188 |
|
| 189 |
# Handle standard HF models
|
| 190 |
else:
|
|
@@ -219,19 +231,26 @@ def initialize_model_once(model_key):
|
|
| 219 |
MODEL_CACHE["is_gguf"] = False
|
| 220 |
|
| 221 |
print(f"Model {model_name} loaded successfully")
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
#
|
| 232 |
-
|
|
|
|
|
|
|
| 233 |
gc.collect()
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], MODEL_CACHE.get("is_gguf", False)
|
| 236 |
|
| 237 |
def get_fallback_model(current_model):
|
|
@@ -312,6 +331,22 @@ def create_llm_pipeline(model_key):
|
|
| 312 |
print(traceback.format_exc())
|
| 313 |
raise RuntimeError(f"Failed to create pipeline: {str(e)}")
|
| 314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
# Modified handle_model_loading_error function
|
| 316 |
def handle_model_loading_error(model_key, session_id):
|
| 317 |
"""Handle model loading errors by providing alternative model suggestions or fallbacks"""
|
|
@@ -724,6 +759,7 @@ def create_gradio_interface():
|
|
| 724 |
|
| 725 |
# Reset handler - enables model selection again
|
| 726 |
def reset_session():
|
|
|
|
| 727 |
return None, False, [], gr.update(interactive=True)
|
| 728 |
|
| 729 |
reset_button.click(
|
|
|
|
| 107 |
|
| 108 |
def initialize_model_once(model_key):
|
| 109 |
with MODEL_CACHE["init_lock"]:
|
| 110 |
+
try:
|
| 111 |
+
current_model = MODEL_CACHE["model_name"]
|
| 112 |
+
if MODEL_CACHE["model"] is None or current_model != model_key:
|
| 113 |
+
# Clear previous model
|
| 114 |
+
if MODEL_CACHE["model"] is not None:
|
| 115 |
+
del MODEL_CACHE["model"]
|
| 116 |
+
if MODEL_CACHE["tokenizer"] is not None:
|
| 117 |
+
del MODEL_CACHE["tokenizer"]
|
| 118 |
+
|
| 119 |
+
# Force garbage collection
|
| 120 |
+
gc.collect()
|
| 121 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 122 |
+
time.sleep(1) # Give system time to release memory
|
| 123 |
|
| 124 |
+
model_info = MODEL_CONFIG[model_key]
|
| 125 |
+
model_name = model_info["name"]
|
| 126 |
+
MODEL_CACHE["model_name"] = model_key
|
| 127 |
|
|
|
|
| 128 |
print(f"Loading model: {model_name}")
|
| 129 |
|
| 130 |
# Check if this is a GGUF model
|
|
|
|
| 173 |
low_cpu_mem_usage=True
|
| 174 |
)
|
| 175 |
MODEL_CACHE["is_gguf"] = False
|
| 176 |
+
|
| 177 |
+
# For Phi-4 specifically
|
| 178 |
+
elif "Phi-4" in model_key:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 180 |
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 181 |
model_name,
|
| 182 |
+
device_map="cpu", # Force CPU explicitly
|
| 183 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
| 184 |
+
low_cpu_mem_usage=True,
|
| 185 |
+
trust_remote_code=True
|
| 186 |
+
)
|
| 187 |
+
MODEL_CACHE["is_gguf"] = False
|
| 188 |
+
|
| 189 |
+
# Special handling for DeepSeek Lite Chat
|
| 190 |
+
elif model_key == "DeepSeek Lite Chat":
|
| 191 |
+
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 192 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 193 |
+
model_name,
|
| 194 |
+
device_map="cpu", # Force CPU
|
| 195 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
| 196 |
low_cpu_mem_usage=True,
|
| 197 |
trust_remote_code=True
|
| 198 |
)
|
| 199 |
+
MODEL_CACHE["is_gguf"] = False
|
| 200 |
|
| 201 |
# Handle standard HF models
|
| 202 |
else:
|
|
|
|
| 231 |
MODEL_CACHE["is_gguf"] = False
|
| 232 |
|
| 233 |
print(f"Model {model_name} loaded successfully")
|
| 234 |
+
|
| 235 |
+
# Final verification that model loaded correctly
|
| 236 |
+
if MODEL_CACHE["model"] is None:
|
| 237 |
+
print(f"WARNING: Model {model_name} appears to be None after loading")
|
| 238 |
+
# Try to free memory before returning
|
| 239 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 240 |
+
gc.collect()
|
| 241 |
+
|
| 242 |
+
except Exception as e:
|
| 243 |
+
# Reset model cache on error
|
| 244 |
+
MODEL_CACHE["model"] = None
|
| 245 |
+
MODEL_CACHE["tokenizer"] = None
|
| 246 |
+
# Force garbage collection
|
| 247 |
gc.collect()
|
| 248 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 249 |
+
import traceback
|
| 250 |
+
print(f"Error loading model {model_key}: {str(e)}")
|
| 251 |
+
print(traceback.format_exc())
|
| 252 |
+
raise RuntimeError(f"Failed to load model {model_key}: {str(e)}")
|
| 253 |
+
|
| 254 |
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], MODEL_CACHE.get("is_gguf", False)
|
| 255 |
|
| 256 |
def get_fallback_model(current_model):
|
|
|
|
| 331 |
print(traceback.format_exc())
|
| 332 |
raise RuntimeError(f"Failed to create pipeline: {str(e)}")
|
| 333 |
|
| 334 |
+
# add a reset function to clear models between sessions
|
| 335 |
+
def reset_model_cache():
|
| 336 |
+
"""Force clear all model cache"""
|
| 337 |
+
with MODEL_CACHE["init_lock"]:
|
| 338 |
+
if MODEL_CACHE["model"] is not None:
|
| 339 |
+
del MODEL_CACHE["model"]
|
| 340 |
+
if MODEL_CACHE["tokenizer"] is not None:
|
| 341 |
+
del MODEL_CACHE["tokenizer"]
|
| 342 |
+
MODEL_CACHE["model"] = None
|
| 343 |
+
MODEL_CACHE["tokenizer"] = None
|
| 344 |
+
MODEL_CACHE["model_name"] = None
|
| 345 |
+
MODEL_CACHE["is_gguf"] = False
|
| 346 |
+
gc.collect()
|
| 347 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 348 |
+
time.sleep(1)
|
| 349 |
+
|
| 350 |
# Modified handle_model_loading_error function
|
| 351 |
def handle_model_loading_error(model_key, session_id):
|
| 352 |
"""Handle model loading errors by providing alternative model suggestions or fallbacks"""
|
|
|
|
| 759 |
|
| 760 |
# Reset handler - enables model selection again
|
| 761 |
def reset_session():
|
| 762 |
+
reset_model_cache() # call reset model cache
|
| 763 |
return None, False, [], gr.update(interactive=True)
|
| 764 |
|
| 765 |
reset_button.click(
|