Spaces:
Build error
Build error
Commit
·
99e7a02
1
Parent(s):
f4adb38
up
Browse files
app.py
CHANGED
|
@@ -22,7 +22,7 @@ from transformers.models.auto.modeling_auto import (
|
|
| 22 |
|
| 23 |
audio_models = list(MODEL_FOR_CTC_MAPPING_NAMES.keys()) + list(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES.keys())
|
| 24 |
|
| 25 |
-
vision_models = list(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES.keys()) + list(MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES.keys()) + list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES.keys())
|
| 26 |
|
| 27 |
today = datetime.date.today()
|
| 28 |
year, week, _ = today.isocalendar()
|
|
@@ -33,6 +33,10 @@ DATASET_REPO_URL = (
|
|
| 33 |
DATA_FILENAME = f"data_{week}_{year}.csv"
|
| 34 |
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
def retrieve_model_stats():
|
| 38 |
hf_api = HfApi()
|
|
@@ -86,10 +90,10 @@ def retrieve_model_stats():
|
|
| 86 |
return result
|
| 87 |
|
| 88 |
|
| 89 |
-
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL)
|
| 90 |
|
| 91 |
if not os.path.isfile(DATA_FILE):
|
| 92 |
-
|
| 93 |
result = retrieve_model_stats()
|
| 94 |
|
| 95 |
if not os.path.isfile(DATA_FILE):
|
|
@@ -107,7 +111,8 @@ int_downloads = np.array(
|
|
| 107 |
[int(x.replace(",", "")) for x in dataframe["num_downloads"].values]
|
| 108 |
)
|
| 109 |
|
| 110 |
-
st.title(f"
|
|
|
|
| 111 |
# print top 20 downloads
|
| 112 |
source = pd.DataFrame(
|
| 113 |
{
|
|
@@ -144,15 +149,15 @@ bar_chart = (
|
|
| 144 |
st.title("Bottom 20 downloads last 30 days")
|
| 145 |
st.altair_chart(bar_chart, use_container_width=True)
|
| 146 |
|
| 147 |
-
# print
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
[int(x.replace(",", "")) for x in
|
| 151 |
)
|
| 152 |
source = pd.DataFrame(
|
| 153 |
{
|
| 154 |
-
"Number of total downloads":
|
| 155 |
-
"Model architecture name":
|
| 156 |
}
|
| 157 |
)
|
| 158 |
bar_chart = (
|
|
@@ -163,18 +168,18 @@ bar_chart = (
|
|
| 163 |
x=alt.X("Model architecture name", sort=None),
|
| 164 |
)
|
| 165 |
)
|
| 166 |
-
st.title("
|
| 167 |
st.altair_chart(bar_chart, use_container_width=True)
|
| 168 |
|
| 169 |
-
# print
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
[int(x.replace(",", "")) for x in
|
| 173 |
)
|
| 174 |
source = pd.DataFrame(
|
| 175 |
{
|
| 176 |
-
"Number of total downloads":
|
| 177 |
-
"Model architecture name":
|
| 178 |
}
|
| 179 |
)
|
| 180 |
bar_chart = (
|
|
@@ -185,16 +190,15 @@ bar_chart = (
|
|
| 185 |
x=alt.X("Model architecture name", sort=None),
|
| 186 |
)
|
| 187 |
)
|
| 188 |
-
st.title("
|
| 189 |
st.altair_chart(bar_chart, use_container_width=True)
|
| 190 |
|
| 191 |
-
|
| 192 |
# print all stats
|
| 193 |
st.title("All stats last 30 days")
|
| 194 |
st.table(dataframe)
|
| 195 |
|
| 196 |
-
st.title("
|
| 197 |
-
st.table(dataframe[dataframe["modality"] == "audio"])
|
| 198 |
-
|
| 199 |
-
st.title("All vision stats last 30 days")
|
| 200 |
st.table(dataframe[dataframe["modality"] == "vision"])
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
audio_models = list(MODEL_FOR_CTC_MAPPING_NAMES.keys()) + list(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES.keys())
|
| 24 |
|
| 25 |
+
vision_models = ["clip"] + list(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES.keys()) + list(MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES.keys()) + list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES.keys())
|
| 26 |
|
| 27 |
today = datetime.date.today()
|
| 28 |
year, week, _ = today.isocalendar()
|
|
|
|
| 33 |
DATA_FILENAME = f"data_{week}_{year}.csv"
|
| 34 |
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
| 35 |
|
| 36 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 37 |
+
|
| 38 |
+
print("is none?", HF_TOKEN is None)
|
| 39 |
+
|
| 40 |
|
| 41 |
def retrieve_model_stats():
|
| 42 |
hf_api = HfApi()
|
|
|
|
| 90 |
return result
|
| 91 |
|
| 92 |
|
| 93 |
+
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN)
|
| 94 |
|
| 95 |
if not os.path.isfile(DATA_FILE):
|
| 96 |
+
st.title("You are the first this week!!! Please wait until the new data is generated and written")
|
| 97 |
result = retrieve_model_stats()
|
| 98 |
|
| 99 |
if not os.path.isfile(DATA_FILE):
|
|
|
|
| 111 |
[int(x.replace(",", "")) for x in dataframe["num_downloads"].values]
|
| 112 |
)
|
| 113 |
|
| 114 |
+
st.title(f"Stats for year {year} and week {week}")
|
| 115 |
+
|
| 116 |
# print top 20 downloads
|
| 117 |
source = pd.DataFrame(
|
| 118 |
{
|
|
|
|
| 149 |
st.title("Bottom 20 downloads last 30 days")
|
| 150 |
st.altair_chart(bar_chart, use_container_width=True)
|
| 151 |
|
| 152 |
+
# print vision
|
| 153 |
+
df_vision = dataframe[dataframe["modality"] == "vision"]
|
| 154 |
+
vision_int_downloads = np.array(
|
| 155 |
+
[int(x.replace(",", "")) for x in df_vision["num_downloads"].values]
|
| 156 |
)
|
| 157 |
source = pd.DataFrame(
|
| 158 |
{
|
| 159 |
+
"Number of total downloads": vision_int_downloads,
|
| 160 |
+
"Model architecture name": df_vision["model_names"].values,
|
| 161 |
}
|
| 162 |
)
|
| 163 |
bar_chart = (
|
|
|
|
| 168 |
x=alt.X("Model architecture name", sort=None),
|
| 169 |
)
|
| 170 |
)
|
| 171 |
+
st.title("Vision downloads last 30 days")
|
| 172 |
st.altair_chart(bar_chart, use_container_width=True)
|
| 173 |
|
| 174 |
+
# print audio
|
| 175 |
+
df_audio = dataframe[dataframe["modality"] == "audio"]
|
| 176 |
+
audio_int_downloads = np.array(
|
| 177 |
+
[int(x.replace(",", "")) for x in df_audio["num_downloads"].values]
|
| 178 |
)
|
| 179 |
source = pd.DataFrame(
|
| 180 |
{
|
| 181 |
+
"Number of total downloads": audio_int_downloads,
|
| 182 |
+
"Model architecture name": df_audio["model_names"].values,
|
| 183 |
}
|
| 184 |
)
|
| 185 |
bar_chart = (
|
|
|
|
| 190 |
x=alt.X("Model architecture name", sort=None),
|
| 191 |
)
|
| 192 |
)
|
| 193 |
+
st.title("Audio downloads last 30 days")
|
| 194 |
st.altair_chart(bar_chart, use_container_width=True)
|
| 195 |
|
|
|
|
| 196 |
# print all stats
|
| 197 |
st.title("All stats last 30 days")
|
| 198 |
st.table(dataframe)
|
| 199 |
|
| 200 |
+
st.title("Vision stats last 30 days")
|
|
|
|
|
|
|
|
|
|
| 201 |
st.table(dataframe[dataframe["modality"] == "vision"])
|
| 202 |
+
|
| 203 |
+
st.title("Audio stats last 30 days")
|
| 204 |
+
st.table(dataframe[dataframe["modality"] == "audio"])
|