File size: 36,427 Bytes
9d4ae64
83aa561
0531be0
6c28396
 
8df4053
e0eea98
83aa561
8bf0664
e0eea98
2dd4885
83aa561
 
 
 
 
 
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fb813
 
 
 
 
 
 
c1be18e
91a801a
 
 
 
 
 
 
 
 
 
 
1799f4b
91a801a
 
 
 
 
 
 
 
 
 
1799f4b
91a801a
 
 
 
 
 
 
1799f4b
91a801a
 
 
 
8df4053
 
 
 
 
 
 
 
 
 
 
91a801a
 
 
 
 
 
 
 
 
e0eea98
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17cbe46
91a801a
 
 
 
 
 
74517ab
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74517ab
91a801a
 
 
 
 
 
 
 
afc20d4
91a801a
 
 
9b2f647
 
 
 
 
 
 
1799f4b
9b2f647
91a801a
 
 
 
 
 
 
 
 
 
e0eea98
91a801a
 
 
 
 
 
1799f4b
91a801a
1799f4b
 
 
 
 
91a801a
 
1799f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91a801a
 
1799f4b
 
039620a
1799f4b
039620a
 
 
 
 
 
 
1799f4b
039620a
1799f4b
 
91a801a
 
 
 
039620a
91a801a
 
c214ec0
8388e80
1799f4b
e0eea98
313e62a
 
e0eea98
 
313e62a
 
e0eea98
1799f4b
e0eea98
1799f4b
 
 
313e62a
 
2c24bbf
91a801a
 
1799f4b
 
 
91a801a
 
9d4ae64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580e68f
 
 
1799f4b
 
580e68f
1799f4b
580e68f
 
 
 
 
 
1799f4b
9d4ae64
 
 
 
 
 
 
 
 
1799f4b
91a801a
 
f896384
91a801a
 
 
 
 
 
 
643e04c
cd8bafc
 
643e04c
cd8bafc
aa240c3
1799f4b
aa240c3
cd8bafc
 
91a801a
c417fc7
 
9d4ae64
c417fc7
91a801a
 
 
 
1799f4b
9d4ae64
 
91a801a
1799f4b
91a801a
 
 
 
 
 
 
 
 
 
 
 
1799f4b
643e04c
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799f4b
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799f4b
 
 
91a801a
1799f4b
91a801a
 
 
 
 
1799f4b
 
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799f4b
 
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d4ae64
 
 
 
 
91a801a
 
 
 
 
 
 
cd8bafc
91a801a
 
 
cd8bafc
1799f4b
7121f00
cd8bafc
91a801a
 
 
1799f4b
 
 
91a801a
 
 
 
 
b20cbc9
91a801a
 
b20cbc9
91a801a
 
 
cd8bafc
91a801a
cd8bafc
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8bafc
2c24bbf
3b90904
 
cd8bafc
 
 
 
e0eea98
91a801a
1799f4b
91a801a
3b90904
bfb9b80
89f9d38
210cb7f
91a801a
 
 
0531be0
91a801a
 
 
 
 
1799f4b
 
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799f4b
91a801a
 
1799f4b
91a801a
 
 
210cb7f
91a801a
210cb7f
91a801a
 
 
 
 
 
 
 
 
 
 
1799f4b
91a801a
1799f4b
 
 
91a801a
 
 
 
c8df84a
 
 
 
91a801a
 
 
 
 
 
83aa561
e6d37b7
83aa561
 
 
 
91a801a
1799f4b
2c24bbf
c214ec0
b7dfb35
c214ec0
 
 
 
e0eea98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3296634
7f776d6
 
 
3b90904
7f776d6
 
1799f4b
 
 
 
 
 
 
 
 
 
 
 
3b90904
7f776d6
 
 
 
 
1799f4b
3b90904
7f776d6
1799f4b
7f776d6
 
 
 
1799f4b
7f776d6
 
3b90904
7f776d6
3b90904
1799f4b
7f776d6
1799f4b
 
ca96a6b
3b90904
 
 
1799f4b
ca96a6b
 
1799f4b
 
ca96a6b
7f776d6
043831b
a27912a
 
1799f4b
a27912a
 
 
1799f4b
a27912a
 
 
91a801a
1799f4b
 
 
d3ab058
1799f4b
d3ab058
2c24bbf
 
 
 
 
 
 
 
 
 
91a801a
 
 
1799f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91a801a
3b90904
 
 
1799f4b
3b90904
 
 
 
1799f4b
3b90904
1799f4b
 
97dd22d
83aa561
 
 
 
 
 
 
 
 
1799f4b
83aa561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91a801a
1799f4b
 
 
3b90904
 
 
2c24bbf
91a801a
 
 
 
 
 
 
 
1799f4b
91a801a
 
 
 
 
83aa561
1799f4b
91a801a
 
 
 
 
 
1799f4b
e605b0c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
import json
import string
import uuid
import os
import logging
import zipfile
import importlib
import wandb
from contextlib import redirect_stdout, redirect_stderr
import spaces

USE_WANDB = "WANDB_API_KEY" in os.environ
if USE_WANDB:
    wandb.login(key=os.environ["WANDB_API_KEY"])
else:
    print("Warning: WANDB_API_KEY not set. Skipping wandb logging.")

import gradio as gr
import pandas as pd
import time
import sys
from datetime import datetime
import re

# --- Configuration ---
DEFAULT_MATERIALS_CSV = "default_materials.csv"
GRADIO_OUTPUT_BASE_DIR = "output"
os.makedirs(GRADIO_OUTPUT_BASE_DIR, exist_ok=True)

REQUIRED_SCRIPT_COLS = ["Brand", " Name", " TD", " Color"]
DISPLAY_COL_MAP = {
    "Brand": "Brand",
    " Name": "Name",
    " TD": "TD",
    " Color": "Color (Hex)",
}

def exc_text(exc: BaseException) -> str:
    txt = str(exc).strip()
    if txt:
        return txt
    if exc.args:
        return " ".join(str(a) for a in exc.args).strip()
    return exc.__class__.__name__

def ensure_required_cols(df, *, in_display_space):
    target_cols = (
        DISPLAY_COL_MAP if in_display_space else {k: k for k in REQUIRED_SCRIPT_COLS}
    )
    df_fixed = df.copy()
    for col_script, col_display in target_cols.items():
        if col_display not in df_fixed.columns:
            if "TD" in col_display:
                default = 0.0
            elif "Color" in col_display:
                default = "#000000"
            elif "Owned" in col_display:
                default = "false"
            else:
                default = ""
            df_fixed[col_display] = default
    return df_fixed[list(target_cols.values())]

def rgba_to_hex(col: str) -> str:
    if not isinstance(col, str):
        return col
    col = col.strip()
    if col.startswith("#"):
        return col.upper()

    m = re.match(
        r"rgba?\(\s*([\d.]+)\s*,\s*([\d.]+)\s*,\s*([\d.]+)(?:\s*,\s*[\d.]+)?\s*\)",
        col,
    )
    if not m:
        return col

    r, g, b = (int(float(x)) for x in m.groups()[:3])
    return "#{:02X}{:02X}{:02X}".format(r, g, b)

def zip_dir_no_compress(src_dir: str, dest_zip: str) -> str:
    t0 = time.time()
    with zipfile.ZipFile(dest_zip, "w",
                         compression=zipfile.ZIP_STORED,
                         allowZip64=True) as zf:
        for root, _, files in os.walk(src_dir):
            for fname in files:
                fpath = os.path.join(root, fname)
                zf.write(fpath, os.path.relpath(fpath, src_dir))
    print(f"Zipping finished in {time.time() - t0:.1f}s")
    return dest_zip

def get_script_args_info(exclude_args=None):
    if exclude_args is None:
        exclude_args = []

    all_args_info = [
        {
            "name": "--iterations",
            "type": "number",
            "default": 4000,
            "help": "Number of optimization iterations",
        },
        {
            "name": "--layer_height",
            "type": "number",
            "default": 0.04,
            "step": 0.01,
            "help": "Layer thickness in mm",
        },
        {
            "name": "--max_layers",
            "type": "number",
            "default": 75,
            "precision": 0,
            "help": "Maximum number of layers",
        },
        {
            "name": "--learning_rate",
            "type": "number",
            "default": 0.015,
            "step": 0.001,
            "help": "Learning rate for optimization",
        },
        {
            "name": "--background_height",
            "type": "number",
            "default": 0.4,
            "step": 0.01,
            "help": "Height of the background in mm",
        },
        {
            "name": "--background_color",
            "type": "colorpicker",
            "default": "#000000",
            "help": "Background color",
        },
        {
            "name": "--stl_output_size",
            "type": "number",
            "default": 100,
            "precision": 0,
            "help": "Size of the longest dimension of the output STL file in mm",
        },
        {
            "name": "--nozzle_diameter",
            "type": "number",
            "default": 0.4,
            "step": 0.1,
            "help": "Diameter of the printer nozzle in mm",
        },
        {
            "name": "--pruning_max_colors",
            "type": "number",
            "default": 100,
            "precision": 0,
            "help": "Max number of colors allowed after pruning",
        },
        {
            "name": "--pruning_max_swaps",
            "type": "number",
            "default": 50,
            "precision": 0,
            "help": "Max number of swaps allowed after pruning",
        },
        {
            "name": "--pruning_max_layer",
            "type": "number",
            "default": 75,
            "precision": 0,
            "help": "Max number of layers allowed after pruning",
        },
        {
            "name": "--warmup_fraction",
            "type": "slider",
            "default": 1.0,
            "min": 0.0,
            "max": 1.0,
            "step": 0.01,
            "help": "Fraction of iterations for keeping the tau at the initial value",
        },
        {
            "name": "--learning_rate_warmup_fraction",
            "type": "slider",
            "default": 0.01,
            "min": 0.0,
            "max": 1.0,
            "step": 0.01,
            "help": "Fraction of iterations that the learning rate is increasing (warmup)",
        },
        {
            "name": "--early_stopping",
            "type": "number",
            "default": 5000,
            "precision": 0,
            "help": "Number of steps without improvement before stopping",
        },
        {
            "name": "--fast_pruning_percent",
            "type": "slider",
            "default": 0.05,
            "min": 0.0,
            "max": 1.0,
            "step": 0.01,
            "help": "Percentage of increment search for fast pruning.",
        },
        {
            "name": "--random_seed",
            "type": "number",
            "default": 0,
            "precision": 0,
            "help": "Specify the random seed, or use 0 for automatic generation",
        },
        {
            "name": "--num_init_rounds",
            "type": "number",
            "default": 8,
            "precision": 0,
            "help": "Number of rounds to choose the starting height map from.",
        },
    ]
    return [arg for arg in all_args_info if arg["name"] not in exclude_args]

# initial data that will be used if no CSV exists
initial_filament_data = {
    "Brand": ["Generic", "Generic", "Generic", "Generic", "Generic", "Generic"],
    " Name": ["PLA Black", "PLA Grey", "PLA White", "PLA Red", "PLA Green", "PLA Blue"],
    " TD": [5.0, 5.0, 5.0, 5.0, 5.0],
    " Color": ["#000000", "#808080", "#FFFFFF", "#FF0000", "#00FF00", "#0000FF"],
    " Owned": ["true", "true", "true", "true", "true", "true"],
}

def normalize_filament_df(df: pd.DataFrame) -> pd.DataFrame:
    df = df.copy()

    df.columns = [c.strip() for c in df.columns]

    rename_map = {
        "Name": " Name",
        "TD": " TD",
        "Color": " Color",
        "Owned": " Owned",
    }
    for src, dst in rename_map.items():
        if src in df.columns and dst not in df.columns:
            df.rename(columns={src: dst}, inplace=True)

    if " TD" in df.columns:
        df[" TD"] = pd.to_numeric(df[" TD"], errors="coerce").fillna(0.0)
    else:
        df[" TD"] = 0.0

    if " Color" in df.columns:
        df[" Color"] = df[" Color"].astype(str)
    else:
        df[" Color"] = "#000000"

    if " Owned" not in df.columns:
        df[" Owned"] = "false"
    else:
        df[" Owned"] = df[" Owned"].astype(str)

    if "Brand" not in df.columns:
        df["Brand"] = ""

    ordered_cols = ["Brand", " Name", " TD", " Color", " Owned"]
    df = df[[c for c in ordered_cols if c in df.columns]]
    return df

# load CSV if present
if os.path.exists(DEFAULT_MATERIALS_CSV):
    try:
        loaded_df = pd.read_csv(DEFAULT_MATERIALS_CSV, index_col=False)
        loaded_df = normalize_filament_df(loaded_df)

        initial_df = loaded_df.copy()

        initial_filament_data = {
            "Brand": initial_df["Brand"].tolist(),
            " Name": initial_df[" Name"].tolist(),
            " TD": initial_df[" TD"].tolist(),
            " Color": initial_df[" Color"].tolist(),
        }
        if " Owned" in initial_df.columns:
            initial_filament_data[" Owned"] = initial_df[" Owned"].astype(str).tolist()
        else:
            initial_filament_data[" Owned"] = ["false"] * len(initial_df)
    except Exception as e:
        print(f"Warning: Could not load {DEFAULT_MATERIALS_CSV}: {e}. Using default.")
        initial_df = pd.DataFrame(initial_filament_data)
else:
    initial_df = pd.DataFrame(initial_filament_data)
    initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)

def run_autoforge_process(cmd, log_path):
    from joblib import parallel_backend
    cli_args = cmd[1:]
    autoforge_main = importlib.import_module("autoforge.__main__")

    exit_code = 0
    with open(log_path, "w", buffering=1, encoding="utf-8") as log_f, \
            redirect_stdout(log_f), redirect_stderr(log_f), parallel_backend("threading", n_jobs=-1):
        try:
            sys.argv = ["autoforge"] + cli_args
            autoforge_main.main()
        except SystemExit as e:
            exit_code = e.code
        except Exception as e:
            log_f.write(f"\nERROR: {e}\n")
            exit_code = -1

    return exit_code

def create_empty_error_outputs(log_message=""):
    return (
        log_message,
        None,
        gr.update(visible=False, interactive=False),
    )

def load_filaments_from_json_upload(file_obj):
    if file_obj is None:
        current_script_df = filament_df_state.value
        if current_script_df is not None and not current_script_df.empty:
            return current_script_df.rename(
                columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
            )
        return initial_df.copy().rename(
            columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
        )

    try:
        with open(file_obj.name, "r", encoding="utf-8") as f:
            data = json.load(f)
        if isinstance(data, dict) and "Filaments" in data:
            data = data["Filaments"]

        df_loaded = pd.DataFrame(data)
        df_loaded.columns = [c.strip() for c in df_loaded.columns]

        rename_map = {
            "Name": " Name",
            "Transmissivity": " TD",
            "Color": " Color",
            "Owned": " Owned",
        }
        df_loaded.rename(
            columns={k: v for k, v in rename_map.items() if k in df_loaded.columns},
            inplace=True,
        )

        df_loaded = normalize_filament_df(df_loaded)

        filament_df_state.value = df_loaded.copy()

        return df_loaded.rename(
            columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
        )

    except Exception as e:
        gr.Error(f"Error loading JSON: {e}")
        return filament_table.value

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# [Autoforge](https://github.com/hvoss-techfak/AutoForge) Web UI")

    filament_df_state = gr.State(initial_df.copy())
    current_run_output_dir = gr.State(None)

    with gr.Tabs():
        with gr.TabItem("Filament Management"):
            gr.Markdown(
                'Manage your filament list here. This list will be used by Autoforge during the optimization process.'
            )
            gr.Markdown(
                'If you have Hueforge, you can export your filaments under "Filaments -> Export" in the Hueforge software. Please make sure to select "CSV" instead of "JSON" during the export dialog.'
            )
            gr.Markdown(
                'If you want to load your personal library of Hueforge filaments, you can also simply paste this path into your explorer address bar: %APPDATA%\\HueForge\\Filaments\\ and import your "personal_library.json" using the "Load Filaments Json" button.'
            )
            gr.Markdown(
                'To remove a filament simply right-click on any of the fields and select "Delete Row"'
            )
            gr.Markdown(
                'Hint: If you have an AMS 3d printer try giving it your entire filament library and then set "pruning_max_colors" under "Autoforge Parameters" in the second tab to your number of AMS slots.'
                ' Autoforge will automatically select the best matching colors for your image.'
            )
            with gr.Row():
                load_csv_button = gr.UploadButton(
                    "Load Filaments CSV", file_types=[".csv"]
                )
                load_json_button = gr.UploadButton(
                    "Load Filaments JSON", file_types=[".json"]
                )
                save_csv_button = gr.Button("Save Current Filaments to CSV")

            filament_table = gr.DataFrame(
                value=ensure_required_cols(
                    initial_df.copy().rename(
                        columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
                    ),
                    in_display_space=True,
                ),
                headers=["Brand", "Name", "TD", "Color (Hex)"],
                datatype=["str", "str", "number", "str"],
                interactive=True,
                label="Filaments",
            )

            gr.Markdown("## Add New Filament")
            with gr.Row():
                new_brand = gr.Textbox(label="Brand")
                new_name = gr.Textbox(label="Name")
            with gr.Row():
                new_td = gr.Number(
                    label="TD (Transmission/Opacity)",
                    value=1.0,
                    minimum=0,
                    maximum=100,
                    step=0.1,
                )
                new_color_hex = gr.ColorPicker(label="Color", value="#FF0000")
            add_filament_button = gr.Button("Add Filament to Table")
            download_csv_trigger = gr.File(
                label="Download Filament CSV", visible=False, interactive=False
            )

            def update_filament_df_state_from_table(display_df):
                display_df = ensure_required_cols(display_df, in_display_space=True)
                if "Color (Hex)" in display_df.columns:
                    display_df["Color (Hex)"] = display_df["Color (Hex)"].apply(
                        rgba_to_hex
                    )

                script_df = display_df.rename(
                    columns={"Name": " Name", "TD": " TD", "Color (Hex)": " Color"}
                )
                script_df = ensure_required_cols(script_df, in_display_space=False)
                filament_df_state.value = script_df

            def add_filament_to_table(current_display_df, brand, name, td, color_hex):
                if not brand or not name:
                    gr.Warning("Brand and Name cannot be empty.")
                    return current_display_df

                color_hex = rgba_to_hex(color_hex)

                new_row = pd.DataFrame(
                    [{"Brand": brand, "Name": name, "TD": td, "Color (Hex)": color_hex}]
                )
                updated_display_df = pd.concat(
                    [current_display_df, new_row], ignore_index=True
                )
                update_filament_df_state_from_table(updated_display_df)
                return updated_display_df

            def load_filaments_from_csv_upload(file_obj):
                if file_obj is None:
                    current_script_df = filament_df_state.value
                    if current_script_df is not None and not current_script_df.empty:
                        return current_script_df.rename(
                            columns={
                                " Name": "Name",
                                " TD": "TD",
                                " Color": "Color (Hex)",
                            }
                        )
                    return initial_df.copy().rename(
                        columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
                    )
                try:
                    loaded_script_df = pd.read_csv(file_obj.name, index_col=False)
                    loaded_script_df = normalize_filament_df(loaded_script_df)

                    expected_cols = ["Brand", " Name", " TD", " Color"]
                    if not all(col in loaded_script_df.columns for col in expected_cols):
                        gr.Error(
                            f"CSV must contain columns: {', '.join(expected_cols)}. Found: {loaded_script_df.columns.tolist()}"
                        )
                        current_script_df = filament_df_state.value
                        if (
                            current_script_df is not None
                            and not current_script_df.empty
                        ):
                            return current_script_df.rename(
                                columns={
                                    " Name": "Name",
                                    " TD": "TD",
                                    " Color": "Color (Hex)",
                                }
                            )
                        return initial_df.copy().rename(
                            columns={
                                " Name": "Name",
                                " TD": "TD",
                                " Color": "Color (Hex)",
                            }
                        )
                    filament_df_state.value = loaded_script_df.copy()
                    return loaded_script_df.rename(
                        columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
                    )
                except Exception as e:
                    gr.Error(f"Error loading CSV: {e}")
                    current_script_df = filament_df_state.value
                    if current_script_df is not None and not current_script_df.empty:
                        return current_script_df.rename(
                            columns={
                                " Name": "Name",
                                " TD": "TD",
                                " Color": "Color (Hex)",
                            }
                        )
                    return initial_df.copy().rename(
                        columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
                    )

            def save_filaments_to_file_for_download(current_script_df_from_state):
                if (
                    current_script_df_from_state is None
                    or current_script_df_from_state.empty
                ):
                    gr.Warning("Filament table is empty. Nothing to save.")
                    return None
                df_to_save = current_script_df_from_state.copy()
                required_cols = ["Brand", " Name", " TD", " Color"]
                if not all(col in df_to_save.columns for col in required_cols):
                    gr.Error(
                        f"Cannot save. DataFrame missing required script columns. Expected: {required_cols}. Found: {df_to_save.columns.tolist()}"
                    )
                    return None
                temp_dir = os.path.join(GRADIO_OUTPUT_BASE_DIR, "_temp_downloads")
                os.makedirs(temp_dir, exist_ok=True)
                temp_filament_csv_path = os.path.join(
                    temp_dir,
                    f"filaments_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
                )
                try:
                    df_to_save.to_csv(temp_filament_csv_path, index=False)
                    gr.Info("Filaments prepared for download.")
                    return gr.File(
                        value=temp_filament_csv_path,
                        label="Download Filament CSV",
                        interactive=True,
                        visible=True,
                    )
                except Exception as e:
                    gr.Error(f"Error saving CSV for download: {e}")
                    return None

            filament_table.change(
                update_filament_df_state_from_table,
                inputs=[filament_table],
                outputs=None,
                queue=False,
            )
            add_filament_button.click(
                add_filament_to_table,
                inputs=[filament_table, new_brand, new_name, new_td, new_color_hex],
                outputs=[filament_table],
            )
            load_csv_button.upload(
                load_filaments_from_csv_upload,
                inputs=[load_csv_button],
                outputs=[filament_table],
            )
            load_json_button.upload(
                load_filaments_from_json_upload,
                inputs=[load_json_button],
                outputs=[filament_table],
            )
            save_csv_button.click(
                save_filaments_to_file_for_download,
                inputs=[filament_df_state],
                outputs=[download_csv_trigger],
            )

        with gr.TabItem("Run Autoforge"):

            accordion_params_dict = {}
            accordion_params_ordered_names = []

            gr.Markdown(
                'Here you can upload an image, adjust the parameters and run the Autoforge process. The filaments from the "Filament Management" Tab are automatically used.'
            )

            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Input Image (Required)")
                    input_image_component = gr.Image(
                        type="pil",
                        image_mode="RGBA",
                        label="Upload Image",
                        sources=["upload"],
                        interactive=True,
                    )
                with gr.Column(scale=2):
                    gr.Markdown("### Preview")
                    with gr.Accordion("Progress & Output", open=True):
                        final_image_preview = gr.Image(
                            label="Model Preview",
                            type="filepath",
                            interactive=False,
                        )

            with gr.Row():
                with gr.Accordion("Autoforge Parameters", open=False):
                    args_for_accordion = get_script_args_info(
                        exclude_args=["--input_image"]
                    )

                    for arg in args_for_accordion:
                        label, info, default_val = (
                            f"{arg['name']}",
                            arg["help"],
                            arg.get("default"),
                        )
                        if arg["type"] == "number":
                            accordion_params_dict[arg["name"]] = gr.Number(
                                label=label,
                                value=default_val,
                                info=info,
                                minimum=arg.get("min"),
                                maximum=arg.get("max"),
                                step=arg.get(
                                    "step",
                                    0.001 if isinstance(default_val, float) else 1,
                                ),
                                precision=arg.get("precision", None),
                            )
                        elif arg["type"] == "slider":
                            accordion_params_dict[arg["name"]] = gr.Slider(
                                label=label,
                                value=default_val,
                                info=info,
                                minimum=arg.get("min", 0),
                                maximum=arg.get("max", 1),
                                step=arg.get("step", 0.01),
                            )
                        elif arg["type"] == "checkbox":
                            accordion_params_dict[arg["name"]] = gr.Checkbox(
                                label=label, value=default_val, info=info
                            )
                        elif arg["type"] == "colorpicker":
                            accordion_params_dict[arg["name"]] = gr.ColorPicker(
                                label=label, value=default_val, info=info
                            )
                        else:
                            accordion_params_dict[arg["name"]] = gr.Textbox(
                                label=label, value=str(default_val), info=info
                            )
                        accordion_params_ordered_names.append(arg["name"])

            run_button = gr.Button(
                "Run Autoforge Process",
                variant="primary",
                elem_id="run_button_full_width",
            )

            progress_output = gr.Textbox(
                label="Console Output",
                lines=15,
                autoscroll=True,
                show_copy_button=False,
            )

            with gr.Row():
                download_results = gr.File(
                    label="Download Results (zip)",
                    file_count="single",
                    interactive=True,
                    visible=False,
                )

    @spaces.GPU(duration=150)
    def execute_autoforge_script(
        current_filaments_df_state_val, input_image, *accordion_param_values
    ):

        log_output = []

        if input_image is None:
            gr.Error("Input Image is required! Please upload an image.")
            return create_empty_error_outputs("Error: Input Image is required!")

        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())
        run_output_dir_val = os.path.join(GRADIO_OUTPUT_BASE_DIR, f"run_{timestamp}")
        os.makedirs(run_output_dir_val, exist_ok=True)
        current_run_output_dir.value = run_output_dir_val

        if (
            current_filaments_df_state_val is None
            or current_filaments_df_state_val.empty
        ):
            gr.Error("Filament table is empty. Please add filaments.")
            return create_empty_error_outputs("Error: Filament table is empty.")

        temp_filament_csv = os.path.join(run_output_dir_val, "materials.csv")
        df_to_save = current_filaments_df_state_val.copy()
        required_cols = ["Brand", " Name", " TD", " Color"]
        missing_cols = [col for col in required_cols if col not in df_to_save.columns]
        if missing_cols:
            err_msg = (
                f"Error: Filament data is missing columns: {', '.join(missing_cols)}."
            )
            gr.Error(err_msg)
            return create_empty_error_outputs(err_msg)
        try:
            df_to_save.to_csv(temp_filament_csv, index=False)
        except Exception as e:
            err_msg = f"Error saving temporary filament CSV: {e}"
            gr.Error(err_msg)
            return create_empty_error_outputs(err_msg)

        command = ["autoforge"]
        command.extend(["--csv_file", temp_filament_csv])
        command.extend(["--output_folder", run_output_dir_val])
        command.extend(["--disable_visualization_for_gradio", "1"])

        try:
            script_input_image_path = os.path.join(
                run_output_dir_val, "input_image.png"
            )
            input_image.save(script_input_image_path, format="PNG")
            command.extend(["--input_image", script_input_image_path])
        except Exception as e:
            err_msg = f"Error handling input image: {e}"
            gr.Error(err_msg)
            return create_empty_error_outputs(err_msg)

        param_dict = dict(zip(accordion_params_ordered_names, accordion_param_values))
        for arg_name, arg_widget_val in param_dict.items():
            if arg_widget_val is None or arg_widget_val == "":
                arg_info_list = [
                    item for item in get_script_args_info() if item["name"] == arg_name
                ]
                if (
                    arg_info_list
                    and arg_info_list[0]["type"] == "checkbox"
                    and arg_widget_val is False
                ):
                    continue
                else:
                    continue

            if arg_name == "--background_color":
                arg_widget_val = rgba_to_hex(arg_widget_val)

            if isinstance(arg_widget_val, bool):
                if arg_widget_val:
                    command.append(arg_name)
            else:
                command.extend([arg_name, str(arg_widget_val)])

        log_output = [
            "Starting Autoforge process at ",
            f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n",
            f"Output directory: {run_output_dir_val}\n",
            f"Command: {' '.join(command)}\n\n",
        ]

        yield create_empty_error_outputs("".join(log_output))

        log_file = os.path.join(run_output_dir_val, "autoforge_live.log")
        open(log_file, "w", encoding="utf-8").close()

        import threading

        class Worker(threading.Thread):
            def __init__(self, cmd, log_path):
                super().__init__(daemon=True)
                self.cmd, self.log_path = cmd, log_path
                self.returncode = None
                self.exc = None

            def run(self):
                try:
                    self.returncode = run_autoforge_process(self.cmd, self.log_path)
                except Exception as e:
                    self.exc = e
                    with open(self.log_path, "a", encoding="utf-8") as lf:
                        lf.write(
                            "\nERROR: {}. This usually means there was no GPU or the process took too long.\n".format(
                                exc_text(e)
                            )
                        )
                    self.returncode = -1

        try:
            worker = Worker(command, log_file)
            worker.start()

            preview_mtime = 0
            last_push = 0
            file_pos = 0

            def _maybe_new_preview():
                nonlocal preview_mtime
                src = os.path.join(run_output_dir_val, "vis_temp.png")
                if not os.path.exists(src):
                    return gr.update()
                mtime = os.path.getmtime(src)
                if mtime <= preview_mtime:
                    return gr.update()
                preview_mtime = mtime
                return src

            while worker.is_alive() or file_pos < os.path.getsize(log_file):
                with open(log_file, "r", encoding="utf-8") as lf:
                    lf.seek(file_pos)
                    new_txt = lf.read()
                    file_pos = lf.tell()
                    log_output.append(new_txt)

                now = time.time()
                if now - last_push >= 1.0:
                    current_preview = _maybe_new_preview()
                    yield (
                        "".join(log_output),
                        current_preview,
                        gr.update(),
                    )
                    last_push = now

                time.sleep(0.05)

            worker.join()
        except RuntimeError as e:
            log_output.append(repr(e))
            gr.Error(str(e))
            with open(log_file, "r", encoding="utf-8") as lf:
                lf.seek(file_pos)
                new_txt = lf.read()
                file_pos = lf.tell()
                log_output.append(new_txt)
            yield (
                "".join(log_output),
                gr.update(),
                gr.update(),
            )
            return create_empty_error_outputs(str(e))

        if getattr(worker, "exc", None) is not None:
            err_msg = f"GPU run failed: {worker.exc}"
            log_output.append(f"\n{err_msg}\n")
            gr.Error(err_msg)
            yield (
                "".join(log_output),
                gr.update(),
                gr.update(),
            )
            return

        with open(log_file, "r", encoding="utf-8") as lf:
            lf.seek(file_pos)
            log_output.append(lf.read())

        return_code = worker.returncode

        files_to_offer = [
            p
            for p in [
                os.path.join(run_output_dir_val, "final_model.png"),
                os.path.join(run_output_dir_val, "final_model.stl"),
                os.path.join(run_output_dir_val, "swap_instructions.txt"),
                os.path.join(run_output_dir_val, "project_file.hfp"),
            ]
            if os.path.exists(p)
        ]
        png_path = os.path.join(run_output_dir_val, "final_model.png")
        out_png = png_path if os.path.exists(png_path) else None

        if return_code != 0:
            err_msg = (
                f"Autoforge exited with code {return_code}\n"
                "See the console output above for details."
            )
            log_output.append(f"\n{err_msg}\n")
            gr.Error(err_msg)
            yield (
                "".join(log_output),
                out_png if out_png else gr.update(),
                gr.update(),
            )
            return

        log_output.append("\nAutoforge process completed successfully!")

        zip_path = None
        if files_to_offer:
            zip_path = os.path.join(run_output_dir_val, "autoforge_results.zip")
            log_output.append(f"\nZipping results to {os.path.basename(zip_path)}...")
            try:
                with zipfile.ZipFile(zip_path, "w", compression=zipfile.ZIP_STORED) as zf:
                    for f in files_to_offer:
                        zf.write(f, os.path.basename(f))
                log_output.append(" done.")
            except Exception as e:
                log_output.append(f"\nError creating zip file: {e}")
                zip_path = None

        if USE_WANDB:
            run = None
            try:
                run = wandb.init(
                    project="autoforge",
                    name=f"run_{timestamp}",
                    notes="Autoforge Web UI run",
                    tags=["autoforge", "gradio"],
                )
                wlogs = {"input_image": wandb.Image(script_input_image_path)}
                if out_png:
                    wlogs["output_image"] = wandb.Image(out_png)
                material_csv = pd.read_csv(temp_filament_csv)
                table = wandb.Table(dataframe=material_csv)
                wlogs["materials"] = table
                from wandb import Html
                log_text = "".join(log_output).replace("\r", "\n")

                def clean_log_strict(text: str) -> str:
                    allowed = set(string.printable) | {"\n", "\t"}
                    return "".join(ch for ch in text if ch in allowed)

                log_text_cleaned = clean_log_strict(log_text)
                wlogs["log"] = Html(f"<pre>{log_text_cleaned}</pre>")

                wandb.log(wlogs)
            except Exception as e:
                print(e)
            finally:
                if run is not None:
                    run.finish()

        yield (
            "".join(log_output),
            out_png,
            gr.update(
                value=zip_path,
                visible=bool(zip_path),
                interactive=bool(zip_path),
            ),
        )

    run_inputs = [filament_df_state, input_image_component] + [
        accordion_params_dict[name] for name in accordion_params_ordered_names
    ]
    run_outputs = [
        progress_output,
        final_image_preview,
        download_results,
    ]

    run_button.click(execute_autoforge_script, inputs=run_inputs, outputs=run_outputs)

css = """ #run_button_full_width { width: 100%; } """

if __name__ == "__main__":
    if not os.path.exists(DEFAULT_MATERIALS_CSV):
        print(f"Creating default filament file: {DEFAULT_MATERIALS_CSV}")
        try:
            initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
        except Exception as e:
            print(f"Could not write default {DEFAULT_MATERIALS_CSV}: {e}")
    print("To run the UI, execute: python app.py")
    demo.queue(default_concurrency_limit=1).launch(share=False)