File size: 9,312 Bytes
40ee6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""
Base LLM client interface for provider-agnostic model access.

This module defines the protocol and data structures for LLM clients,
enabling seamless switching between providers (OpenAI, Anthropic, LM Studio, etc.)
"""

import asyncio
import time
from abc import ABC, abstractmethod
from collections.abc import AsyncIterator
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Protocol, runtime_checkable


@dataclass
class LLMResponse:
    """Standardized response from any LLM provider."""

    text: str
    usage: dict = field(default_factory=dict)
    model: str = ""
    raw_response: Any = None
    finish_reason: str = "stop"
    created_at: datetime = field(default_factory=datetime.utcnow)

    @property
    def total_tokens(self) -> int:
        """Total tokens used in request/response."""
        return self.usage.get("total_tokens", 0)

    @property
    def prompt_tokens(self) -> int:
        """Tokens used in prompt."""
        return self.usage.get("prompt_tokens", 0)

    @property
    def completion_tokens(self) -> int:
        """Tokens used in completion."""
        return self.usage.get("completion_tokens", 0)


@dataclass
class ToolCall:
    """Represents a tool/function call from the LLM."""

    id: str
    name: str
    arguments: dict
    type: str = "function"


@dataclass
class LLMToolResponse(LLMResponse):
    """Response containing tool calls."""

    tool_calls: list[ToolCall] = field(default_factory=list)


class TokenBucketRateLimiter:
    """
    Token bucket rate limiter for controlling request rates.

    This implementation uses a token bucket algorithm where:
    - Tokens are added at a fixed rate (rate_per_second)
    - Each request consumes one token
    - If no tokens available, caller waits until one becomes available
    """

    def __init__(self, rate_per_minute: int = 60):
        """
        Initialize the rate limiter.

        Args:
            rate_per_minute: Maximum requests allowed per minute
        """
        self.rate_per_second = rate_per_minute / 60.0
        self.max_tokens = float(rate_per_minute)
        self.tokens = self.max_tokens
        self.last_refill = time.monotonic()
        self._lock = asyncio.Lock()
        self._wait_count = 0
        self._total_wait_time = 0.0

    async def acquire(self) -> float:
        """
        Acquire a token, waiting if necessary.

        Returns:
            Time spent waiting (0.0 if no wait was needed)
        """
        async with self._lock:
            now = time.monotonic()
            elapsed = now - self.last_refill

            # Refill tokens based on elapsed time
            self.tokens = min(self.max_tokens, self.tokens + elapsed * self.rate_per_second)
            self.last_refill = now

            wait_time = 0.0
            if self.tokens < 1:
                # Calculate how long to wait for one token
                wait_time = (1 - self.tokens) / self.rate_per_second
                self._wait_count += 1
                self._total_wait_time += wait_time

                # Release lock during sleep to allow other operations
                self._lock.release()
                try:
                    await asyncio.sleep(wait_time)
                finally:
                    await self._lock.acquire()

                # After sleeping, update time and set tokens to 0
                self.last_refill = time.monotonic()
                self.tokens = 0
            else:
                self.tokens -= 1

            return wait_time

    @property
    def stats(self) -> dict:
        """Get rate limiter statistics."""
        return {
            "rate_limit_waits": self._wait_count,
            "total_rate_limit_wait_time": self._total_wait_time,
            "current_tokens": self.tokens,
        }


@runtime_checkable
class LLMClient(Protocol):
    """
    Protocol for LLM clients.

    This protocol defines the interface that all LLM provider adapters must implement.
    Using Protocol allows for structural subtyping (duck typing) while maintaining
    type safety.
    """

    async def generate(
        self,
        *,
        messages: list[dict] | None = None,
        prompt: str | None = None,
        temperature: float = 0.7,
        max_tokens: int | None = None,
        tools: list[dict] | None = None,
        stream: bool = False,
        stop: list[str] | None = None,
        **kwargs: Any,
    ) -> LLMResponse | AsyncIterator[str]:
        """
        Generate a response from the LLM.

        Args:
            messages: List of message dicts in OpenAI format [{"role": "...", "content": "..."}]
            prompt: Simple string prompt (converted to single user message)
            temperature: Sampling temperature (0.0 to 2.0)
            max_tokens: Maximum tokens to generate
            tools: List of tool definitions for function calling
            stream: If True, returns AsyncIterator[str] for streaming
            stop: Stop sequences
            **kwargs: Provider-specific parameters

        Returns:
            LLMResponse if stream=False, AsyncIterator[str] if stream=True

        Raises:
            LLMClientError: Base exception for all client errors
        """
        ...


class BaseLLMClient(ABC):
    """
    Abstract base class for LLM clients.

    Provides common functionality and enforces the interface contract.
    All concrete implementations should inherit from this class.
    """

    def __init__(
        self,
        api_key: str | None = None,
        model: str = "default",
        base_url: str | None = None,
        timeout: float = 60.0,
        max_retries: int = 3,
        rate_limit_per_minute: int | None = None,
    ):
        """
        Initialize the LLM client.

        Args:
            api_key: API key for authentication
            model: Model identifier
            base_url: Base URL for API requests
            timeout: Request timeout in seconds
            max_retries: Maximum number of retry attempts
            rate_limit_per_minute: Rate limit (requests per minute), None to disable
        """
        self.api_key = api_key
        self.model = model
        self.base_url = base_url
        self.timeout = timeout
        self.max_retries = max_retries
        self._request_count = 0
        self._total_tokens_used = 0
        self._rate_limited_requests = 0

        # Initialize rate limiter if configured
        if rate_limit_per_minute is not None and rate_limit_per_minute > 0:
            self._rate_limiter: TokenBucketRateLimiter | None = TokenBucketRateLimiter(
                rate_per_minute=rate_limit_per_minute
            )
        else:
            self._rate_limiter = None

    @abstractmethod
    async def generate(
        self,
        *,
        messages: list[dict] | None = None,
        prompt: str | None = None,
        temperature: float = 0.7,
        max_tokens: int | None = None,
        tools: list[dict] | None = None,
        stream: bool = False,
        stop: list[str] | None = None,
        **kwargs: Any,
    ) -> LLMResponse | AsyncIterator[str]:
        """Generate a response from the LLM."""
        pass

    def _build_messages(
        self,
        messages: list[dict] | None = None,
        prompt: str | None = None,
    ) -> list[dict]:
        """
        Build message list from either messages or prompt.

        Args:
            messages: Pre-formatted message list
            prompt: Simple string prompt

        Returns:
            List of message dicts

        Raises:
            ValueError: If neither messages nor prompt provided
        """
        if messages is not None:
            return messages
        elif prompt is not None:
            return [{"role": "user", "content": prompt}]
        else:
            raise ValueError("Either 'messages' or 'prompt' must be provided")

    def _update_stats(self, response: LLMResponse) -> None:
        """Update internal statistics."""
        self._request_count += 1
        self._total_tokens_used += response.total_tokens

    async def _apply_rate_limit(self) -> None:
        """
        Apply rate limiting if configured.

        Waits if necessary to comply with rate limits.
        Tracks rate-limited requests in metrics.
        """
        if self._rate_limiter is not None:
            wait_time = await self._rate_limiter.acquire()
            if wait_time > 0:
                self._rate_limited_requests += 1

    @property
    def stats(self) -> dict:
        """Get client statistics."""
        base_stats = {
            "request_count": self._request_count,
            "total_tokens_used": self._total_tokens_used,
            "rate_limited_requests": self._rate_limited_requests,
        }

        # Include rate limiter stats if available
        if self._rate_limiter is not None:
            base_stats.update(self._rate_limiter.stats)

        return base_stats

    async def close(self) -> None:  # noqa: B027
        """Clean up resources. Override in subclasses if needed."""
        pass

    async def __aenter__(self):
        """Async context manager entry."""
        return self

    async def __aexit__(self, exc_type, exc_val, exc_tb):
        """Async context manager exit."""
        await self.close()