Spaces:
Sleeping
Sleeping
File size: 9,312 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
"""
Base LLM client interface for provider-agnostic model access.
This module defines the protocol and data structures for LLM clients,
enabling seamless switching between providers (OpenAI, Anthropic, LM Studio, etc.)
"""
import asyncio
import time
from abc import ABC, abstractmethod
from collections.abc import AsyncIterator
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Protocol, runtime_checkable
@dataclass
class LLMResponse:
"""Standardized response from any LLM provider."""
text: str
usage: dict = field(default_factory=dict)
model: str = ""
raw_response: Any = None
finish_reason: str = "stop"
created_at: datetime = field(default_factory=datetime.utcnow)
@property
def total_tokens(self) -> int:
"""Total tokens used in request/response."""
return self.usage.get("total_tokens", 0)
@property
def prompt_tokens(self) -> int:
"""Tokens used in prompt."""
return self.usage.get("prompt_tokens", 0)
@property
def completion_tokens(self) -> int:
"""Tokens used in completion."""
return self.usage.get("completion_tokens", 0)
@dataclass
class ToolCall:
"""Represents a tool/function call from the LLM."""
id: str
name: str
arguments: dict
type: str = "function"
@dataclass
class LLMToolResponse(LLMResponse):
"""Response containing tool calls."""
tool_calls: list[ToolCall] = field(default_factory=list)
class TokenBucketRateLimiter:
"""
Token bucket rate limiter for controlling request rates.
This implementation uses a token bucket algorithm where:
- Tokens are added at a fixed rate (rate_per_second)
- Each request consumes one token
- If no tokens available, caller waits until one becomes available
"""
def __init__(self, rate_per_minute: int = 60):
"""
Initialize the rate limiter.
Args:
rate_per_minute: Maximum requests allowed per minute
"""
self.rate_per_second = rate_per_minute / 60.0
self.max_tokens = float(rate_per_minute)
self.tokens = self.max_tokens
self.last_refill = time.monotonic()
self._lock = asyncio.Lock()
self._wait_count = 0
self._total_wait_time = 0.0
async def acquire(self) -> float:
"""
Acquire a token, waiting if necessary.
Returns:
Time spent waiting (0.0 if no wait was needed)
"""
async with self._lock:
now = time.monotonic()
elapsed = now - self.last_refill
# Refill tokens based on elapsed time
self.tokens = min(self.max_tokens, self.tokens + elapsed * self.rate_per_second)
self.last_refill = now
wait_time = 0.0
if self.tokens < 1:
# Calculate how long to wait for one token
wait_time = (1 - self.tokens) / self.rate_per_second
self._wait_count += 1
self._total_wait_time += wait_time
# Release lock during sleep to allow other operations
self._lock.release()
try:
await asyncio.sleep(wait_time)
finally:
await self._lock.acquire()
# After sleeping, update time and set tokens to 0
self.last_refill = time.monotonic()
self.tokens = 0
else:
self.tokens -= 1
return wait_time
@property
def stats(self) -> dict:
"""Get rate limiter statistics."""
return {
"rate_limit_waits": self._wait_count,
"total_rate_limit_wait_time": self._total_wait_time,
"current_tokens": self.tokens,
}
@runtime_checkable
class LLMClient(Protocol):
"""
Protocol for LLM clients.
This protocol defines the interface that all LLM provider adapters must implement.
Using Protocol allows for structural subtyping (duck typing) while maintaining
type safety.
"""
async def generate(
self,
*,
messages: list[dict] | None = None,
prompt: str | None = None,
temperature: float = 0.7,
max_tokens: int | None = None,
tools: list[dict] | None = None,
stream: bool = False,
stop: list[str] | None = None,
**kwargs: Any,
) -> LLMResponse | AsyncIterator[str]:
"""
Generate a response from the LLM.
Args:
messages: List of message dicts in OpenAI format [{"role": "...", "content": "..."}]
prompt: Simple string prompt (converted to single user message)
temperature: Sampling temperature (0.0 to 2.0)
max_tokens: Maximum tokens to generate
tools: List of tool definitions for function calling
stream: If True, returns AsyncIterator[str] for streaming
stop: Stop sequences
**kwargs: Provider-specific parameters
Returns:
LLMResponse if stream=False, AsyncIterator[str] if stream=True
Raises:
LLMClientError: Base exception for all client errors
"""
...
class BaseLLMClient(ABC):
"""
Abstract base class for LLM clients.
Provides common functionality and enforces the interface contract.
All concrete implementations should inherit from this class.
"""
def __init__(
self,
api_key: str | None = None,
model: str = "default",
base_url: str | None = None,
timeout: float = 60.0,
max_retries: int = 3,
rate_limit_per_minute: int | None = None,
):
"""
Initialize the LLM client.
Args:
api_key: API key for authentication
model: Model identifier
base_url: Base URL for API requests
timeout: Request timeout in seconds
max_retries: Maximum number of retry attempts
rate_limit_per_minute: Rate limit (requests per minute), None to disable
"""
self.api_key = api_key
self.model = model
self.base_url = base_url
self.timeout = timeout
self.max_retries = max_retries
self._request_count = 0
self._total_tokens_used = 0
self._rate_limited_requests = 0
# Initialize rate limiter if configured
if rate_limit_per_minute is not None and rate_limit_per_minute > 0:
self._rate_limiter: TokenBucketRateLimiter | None = TokenBucketRateLimiter(
rate_per_minute=rate_limit_per_minute
)
else:
self._rate_limiter = None
@abstractmethod
async def generate(
self,
*,
messages: list[dict] | None = None,
prompt: str | None = None,
temperature: float = 0.7,
max_tokens: int | None = None,
tools: list[dict] | None = None,
stream: bool = False,
stop: list[str] | None = None,
**kwargs: Any,
) -> LLMResponse | AsyncIterator[str]:
"""Generate a response from the LLM."""
pass
def _build_messages(
self,
messages: list[dict] | None = None,
prompt: str | None = None,
) -> list[dict]:
"""
Build message list from either messages or prompt.
Args:
messages: Pre-formatted message list
prompt: Simple string prompt
Returns:
List of message dicts
Raises:
ValueError: If neither messages nor prompt provided
"""
if messages is not None:
return messages
elif prompt is not None:
return [{"role": "user", "content": prompt}]
else:
raise ValueError("Either 'messages' or 'prompt' must be provided")
def _update_stats(self, response: LLMResponse) -> None:
"""Update internal statistics."""
self._request_count += 1
self._total_tokens_used += response.total_tokens
async def _apply_rate_limit(self) -> None:
"""
Apply rate limiting if configured.
Waits if necessary to comply with rate limits.
Tracks rate-limited requests in metrics.
"""
if self._rate_limiter is not None:
wait_time = await self._rate_limiter.acquire()
if wait_time > 0:
self._rate_limited_requests += 1
@property
def stats(self) -> dict:
"""Get client statistics."""
base_stats = {
"request_count": self._request_count,
"total_tokens_used": self._total_tokens_used,
"rate_limited_requests": self._rate_limited_requests,
}
# Include rate limiter stats if available
if self._rate_limiter is not None:
base_stats.update(self._rate_limiter.stats)
return base_stats
async def close(self) -> None: # noqa: B027
"""Clean up resources. Override in subclasses if needed."""
pass
async def __aenter__(self):
"""Async context manager entry."""
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit."""
await self.close()
|