File size: 15,778 Bytes
40ee6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
"""
OpenAI-compatible LLM client adapter.

Implements the LLMClient protocol for OpenAI API (and compatible APIs).
Includes retry logic, circuit breaker pattern, and streaming support.
"""

import json
import logging
import time
from collections.abc import AsyncIterator
from typing import Any

import httpx
from tenacity import (
    before_sleep_log,
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

from .base import BaseLLMClient, LLMResponse, LLMToolResponse, ToolCall
from .exceptions import (
    CircuitBreakerOpenError,
    LLMAuthenticationError,
    LLMClientError,
    LLMConnectionError,
    LLMContextLengthError,
    LLMInvalidRequestError,
    LLMModelNotFoundError,
    LLMQuotaExceededError,
    LLMRateLimitError,
    LLMResponseParseError,
    LLMServerError,
    LLMStreamError,
    LLMTimeoutError,
)

logger = logging.getLogger(__name__)


class CircuitBreaker:
    """Simple circuit breaker implementation for resilience."""

    def __init__(
        self,
        failure_threshold: int = 5,
        reset_timeout: float = 60.0,
        half_open_max_calls: int = 1,
    ):
        self.failure_threshold = failure_threshold
        self.reset_timeout = reset_timeout
        self.half_open_max_calls = half_open_max_calls
        self.failure_count = 0
        self.last_failure_time = 0.0
        self.state = "closed"  # closed, open, half-open
        self.half_open_calls = 0

    def can_execute(self) -> bool:
        """Check if request can be executed."""
        if self.state == "closed":
            return True

        if self.state == "open":
            # Check if reset timeout has passed
            if time.time() - self.last_failure_time >= self.reset_timeout:
                self.state = "half-open"
                self.half_open_calls = 0
                return True
            return False

        if self.state == "half-open":
            return self.half_open_calls < self.half_open_max_calls

        return False

    def record_success(self) -> None:
        """Record successful request."""
        if self.state == "half-open":
            self.state = "closed"
            self.failure_count = 0
        elif self.state == "closed":
            self.failure_count = 0

    def record_failure(self) -> None:
        """Record failed request."""
        self.failure_count += 1
        self.last_failure_time = time.time()

        if self.state == "half-open" or self.failure_count >= self.failure_threshold:
            self.state = "open"

    def get_reset_time(self) -> float:
        """Get time until circuit resets."""
        if self.state != "open":
            return 0.0
        elapsed = time.time() - self.last_failure_time
        return max(0, self.reset_timeout - elapsed)


class OpenAIClient(BaseLLMClient):
    """
    OpenAI API client with retry logic and circuit breaker.

    Features:
    - Exponential backoff retry for transient errors
    - Circuit breaker to prevent cascading failures
    - Streaming support
    - Structured error handling
    - Tool/function calling support
    """

    PROVIDER_NAME = "openai"
    DEFAULT_BASE_URL = "https://api.openai.com/v1"
    DEFAULT_MODEL = "gpt-4-turbo-preview"

    def __init__(
        self,
        api_key: str | None = None,
        model: str | None = None,
        base_url: str | None = None,
        timeout: float = 60.0,
        max_retries: int = 3,
        organization: str | None = None,
        # Circuit breaker settings
        circuit_breaker_threshold: int = 5,
        circuit_breaker_reset: float = 60.0,
        # Rate limiting
        rate_limit_per_minute: int | None = None,
    ):
        """
        Initialize OpenAI client.

        Args:
            api_key: OpenAI API key (or set OPENAI_API_KEY env var)
            model: Model to use (default: gpt-4-turbo-preview)
            base_url: API base URL (default: https://api.openai.com/v1)
            timeout: Request timeout in seconds
            max_retries: Max retry attempts for transient errors
            organization: Optional organization ID
            circuit_breaker_threshold: Failures before circuit opens
            circuit_breaker_reset: Seconds before circuit resets
            rate_limit_per_minute: Rate limit for requests per minute (None to disable)
        """
        import os

        api_key = api_key or os.environ.get("OPENAI_API_KEY")
        if not api_key:
            raise LLMAuthenticationError(self.PROVIDER_NAME, "API key not provided and OPENAI_API_KEY not set")

        super().__init__(
            api_key=api_key,
            model=model or self.DEFAULT_MODEL,
            base_url=base_url or self.DEFAULT_BASE_URL,
            timeout=timeout,
            max_retries=max_retries,
            rate_limit_per_minute=rate_limit_per_minute,
        )

        self.organization = organization
        self.circuit_breaker = CircuitBreaker(
            failure_threshold=circuit_breaker_threshold,
            reset_timeout=circuit_breaker_reset,
        )

        # Initialize async HTTP client
        self._client: httpx.AsyncClient | None = None

    async def _get_client(self) -> httpx.AsyncClient:
        """Get or create the HTTP client."""
        if self._client is None or self._client.is_closed:
            headers = {
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json",
            }
            if self.organization:
                headers["OpenAI-Organization"] = self.organization

            self._client = httpx.AsyncClient(
                base_url=self.base_url,
                headers=headers,
                timeout=httpx.Timeout(self.timeout),
            )
        return self._client

    def _handle_error_response(self, response: httpx.Response) -> None:
        """Convert HTTP error responses to appropriate exceptions."""
        status_code = response.status_code

        try:
            error_data = response.json()
            error_message = error_data.get("error", {}).get("message", response.text)
        except Exception:
            error_message = response.text

        if status_code == 401:
            raise LLMAuthenticationError(self.PROVIDER_NAME, error_message)
        elif status_code == 429:
            retry_after = response.headers.get("Retry-After")
            retry_after_float = float(retry_after) if retry_after else None
            raise LLMRateLimitError(self.PROVIDER_NAME, retry_after=retry_after_float, message=error_message)
        elif status_code == 402:
            raise LLMQuotaExceededError(self.PROVIDER_NAME, error_message)
        elif status_code == 404:
            raise LLMModelNotFoundError(self.PROVIDER_NAME, self.model)
        elif status_code == 400:
            if "context_length" in error_message.lower():
                raise LLMContextLengthError(self.PROVIDER_NAME)
            raise LLMInvalidRequestError(self.PROVIDER_NAME, error_message)
        elif status_code >= 500:
            raise LLMServerError(self.PROVIDER_NAME, status_code, error_message)
        else:
            raise LLMClientError(error_message, self.PROVIDER_NAME, status_code=status_code)

    def _make_retry_decorator(self):
        """Create retry decorator with exponential backoff."""
        return retry(
            stop=stop_after_attempt(self.max_retries),
            wait=wait_exponential(multiplier=1, min=1, max=60),
            retry=retry_if_exception_type((LLMRateLimitError, LLMServerError, LLMConnectionError)),
            before_sleep=before_sleep_log(logger, logging.WARNING),
            reraise=True,
        )

    async def generate(
        self,
        *,
        messages: list[dict] | None = None,
        prompt: str | None = None,
        temperature: float = 0.7,
        max_tokens: int | None = None,
        tools: list[dict] | None = None,
        stream: bool = False,
        stop: list[str] | None = None,
        **kwargs: Any,
    ) -> LLMResponse | AsyncIterator[str]:
        """
        Generate a response from OpenAI.

        Args:
            messages: Chat messages in OpenAI format
            prompt: Simple string prompt
            temperature: Sampling temperature (0.0 to 2.0)
            max_tokens: Maximum tokens to generate
            tools: Tool definitions for function calling
            stream: If True, returns AsyncIterator
            stop: Stop sequences
            **kwargs: Additional OpenAI parameters (top_p, presence_penalty, etc.)

        Returns:
            LLMResponse or AsyncIterator[str] for streaming
        """
        # Apply rate limiting before proceeding
        await self._apply_rate_limit()

        # Check circuit breaker
        if not self.circuit_breaker.can_execute():
            raise CircuitBreakerOpenError(
                self.PROVIDER_NAME,
                self.circuit_breaker.failure_count,
                self.circuit_breaker.get_reset_time(),
            )

        if stream:
            return self._generate_stream(
                messages=messages,
                prompt=prompt,
                temperature=temperature,
                max_tokens=max_tokens,
                tools=tools,
                stop=stop,
                **kwargs,
            )
        else:
            return await self._generate_non_stream(
                messages=messages,
                prompt=prompt,
                temperature=temperature,
                max_tokens=max_tokens,
                tools=tools,
                stop=stop,
                **kwargs,
            )

    async def _generate_non_stream(
        self,
        *,
        messages: list[dict] | None = None,
        prompt: str | None = None,
        temperature: float = 0.7,
        max_tokens: int | None = None,
        tools: list[dict] | None = None,
        stop: list[str] | None = None,
        **kwargs: Any,
    ) -> LLMResponse:
        """Non-streaming generation with retry logic."""

        @self._make_retry_decorator()
        async def _request():
            client = await self._get_client()

            # Build request payload
            payload = {
                "model": self.model,
                "messages": self._build_messages(messages, prompt),
                "temperature": temperature,
            }

            if max_tokens is not None:
                payload["max_tokens"] = max_tokens
            if stop:
                payload["stop"] = stop
            if tools:
                payload["tools"] = tools
                payload["tool_choice"] = kwargs.pop("tool_choice", "auto")

            # Add any additional kwargs
            payload.update(kwargs)

            try:
                response = await client.post("/chat/completions", json=payload)
            except httpx.TimeoutException:
                raise LLMTimeoutError(self.PROVIDER_NAME, self.timeout)
            except httpx.ConnectError:
                raise LLMConnectionError(self.PROVIDER_NAME, self.base_url)

            if response.status_code != 200:
                self._handle_error_response(response)

            return response

        try:
            response = await _request()
            self.circuit_breaker.record_success()
        except Exception:
            self.circuit_breaker.record_failure()
            raise

        # Parse response
        try:
            data = response.json()
            choice = data["choices"][0]
            message = choice["message"]

            usage = data.get("usage", {})
            finish_reason = choice.get("finish_reason", "stop")

            # Check for tool calls
            if "tool_calls" in message:
                tool_calls = [
                    ToolCall(
                        id=tc["id"],
                        name=tc["function"]["name"],
                        arguments=json.loads(tc["function"]["arguments"]),
                    )
                    for tc in message["tool_calls"]
                ]
                llm_response = LLMToolResponse(
                    text=message.get("content", ""),
                    usage=usage,
                    model=data.get("model", self.model),
                    raw_response=data,
                    finish_reason=finish_reason,
                    tool_calls=tool_calls,
                )
            else:
                llm_response = LLMResponse(
                    text=message.get("content", ""),
                    usage=usage,
                    model=data.get("model", self.model),
                    raw_response=data,
                    finish_reason=finish_reason,
                )

            self._update_stats(llm_response)
            return llm_response

        except (KeyError, json.JSONDecodeError) as e:
            raise LLMResponseParseError(self.PROVIDER_NAME, response.text) from e

    async def _generate_stream(
        self,
        *,
        messages: list[dict] | None = None,
        prompt: str | None = None,
        temperature: float = 0.7,
        max_tokens: int | None = None,
        tools: list[dict] | None = None,
        stop: list[str] | None = None,
        **kwargs: Any,
    ) -> AsyncIterator[str]:
        """Streaming generation."""

        client = await self._get_client()

        # Build request payload
        payload = {
            "model": self.model,
            "messages": self._build_messages(messages, prompt),
            "temperature": temperature,
            "stream": True,
        }

        if max_tokens is not None:
            payload["max_tokens"] = max_tokens
        if stop:
            payload["stop"] = stop
        # Note: tools with streaming have limited support
        if tools:
            payload["tools"] = tools

        payload.update(kwargs)

        async def stream_generator():
            try:
                async with client.stream("POST", "/chat/completions", json=payload) as response:
                    if response.status_code != 200:
                        # Read the full response for error handling
                        await response.aread()
                        self._handle_error_response(response)

                    async for line in response.aiter_lines():
                        if line.startswith("data: "):
                            data_str = line[6:]
                            if data_str.strip() == "[DONE]":
                                break

                            try:
                                data = json.loads(data_str)
                                delta = data["choices"][0].get("delta", {})
                                content = delta.get("content", "")
                                if content:
                                    yield content
                            except (json.JSONDecodeError, KeyError):
                                continue

                self.circuit_breaker.record_success()

            except httpx.TimeoutException:
                self.circuit_breaker.record_failure()
                raise LLMTimeoutError(self.PROVIDER_NAME, self.timeout)
            except httpx.ConnectError:
                self.circuit_breaker.record_failure()
                raise LLMConnectionError(self.PROVIDER_NAME, self.base_url)
            except Exception as e:
                self.circuit_breaker.record_failure()
                if isinstance(e, LLMClientError):
                    raise
                raise LLMStreamError(self.PROVIDER_NAME, str(e)) from e

        return stream_generator()

    async def close(self) -> None:
        """Close the HTTP client."""
        if self._client and not self._client.is_closed:
            await self._client.aclose()
            self._client = None