Spaces:
Sleeping
Sleeping
File size: 15,778 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
"""
OpenAI-compatible LLM client adapter.
Implements the LLMClient protocol for OpenAI API (and compatible APIs).
Includes retry logic, circuit breaker pattern, and streaming support.
"""
import json
import logging
import time
from collections.abc import AsyncIterator
from typing import Any
import httpx
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from .base import BaseLLMClient, LLMResponse, LLMToolResponse, ToolCall
from .exceptions import (
CircuitBreakerOpenError,
LLMAuthenticationError,
LLMClientError,
LLMConnectionError,
LLMContextLengthError,
LLMInvalidRequestError,
LLMModelNotFoundError,
LLMQuotaExceededError,
LLMRateLimitError,
LLMResponseParseError,
LLMServerError,
LLMStreamError,
LLMTimeoutError,
)
logger = logging.getLogger(__name__)
class CircuitBreaker:
"""Simple circuit breaker implementation for resilience."""
def __init__(
self,
failure_threshold: int = 5,
reset_timeout: float = 60.0,
half_open_max_calls: int = 1,
):
self.failure_threshold = failure_threshold
self.reset_timeout = reset_timeout
self.half_open_max_calls = half_open_max_calls
self.failure_count = 0
self.last_failure_time = 0.0
self.state = "closed" # closed, open, half-open
self.half_open_calls = 0
def can_execute(self) -> bool:
"""Check if request can be executed."""
if self.state == "closed":
return True
if self.state == "open":
# Check if reset timeout has passed
if time.time() - self.last_failure_time >= self.reset_timeout:
self.state = "half-open"
self.half_open_calls = 0
return True
return False
if self.state == "half-open":
return self.half_open_calls < self.half_open_max_calls
return False
def record_success(self) -> None:
"""Record successful request."""
if self.state == "half-open":
self.state = "closed"
self.failure_count = 0
elif self.state == "closed":
self.failure_count = 0
def record_failure(self) -> None:
"""Record failed request."""
self.failure_count += 1
self.last_failure_time = time.time()
if self.state == "half-open" or self.failure_count >= self.failure_threshold:
self.state = "open"
def get_reset_time(self) -> float:
"""Get time until circuit resets."""
if self.state != "open":
return 0.0
elapsed = time.time() - self.last_failure_time
return max(0, self.reset_timeout - elapsed)
class OpenAIClient(BaseLLMClient):
"""
OpenAI API client with retry logic and circuit breaker.
Features:
- Exponential backoff retry for transient errors
- Circuit breaker to prevent cascading failures
- Streaming support
- Structured error handling
- Tool/function calling support
"""
PROVIDER_NAME = "openai"
DEFAULT_BASE_URL = "https://api.openai.com/v1"
DEFAULT_MODEL = "gpt-4-turbo-preview"
def __init__(
self,
api_key: str | None = None,
model: str | None = None,
base_url: str | None = None,
timeout: float = 60.0,
max_retries: int = 3,
organization: str | None = None,
# Circuit breaker settings
circuit_breaker_threshold: int = 5,
circuit_breaker_reset: float = 60.0,
# Rate limiting
rate_limit_per_minute: int | None = None,
):
"""
Initialize OpenAI client.
Args:
api_key: OpenAI API key (or set OPENAI_API_KEY env var)
model: Model to use (default: gpt-4-turbo-preview)
base_url: API base URL (default: https://api.openai.com/v1)
timeout: Request timeout in seconds
max_retries: Max retry attempts for transient errors
organization: Optional organization ID
circuit_breaker_threshold: Failures before circuit opens
circuit_breaker_reset: Seconds before circuit resets
rate_limit_per_minute: Rate limit for requests per minute (None to disable)
"""
import os
api_key = api_key or os.environ.get("OPENAI_API_KEY")
if not api_key:
raise LLMAuthenticationError(self.PROVIDER_NAME, "API key not provided and OPENAI_API_KEY not set")
super().__init__(
api_key=api_key,
model=model or self.DEFAULT_MODEL,
base_url=base_url or self.DEFAULT_BASE_URL,
timeout=timeout,
max_retries=max_retries,
rate_limit_per_minute=rate_limit_per_minute,
)
self.organization = organization
self.circuit_breaker = CircuitBreaker(
failure_threshold=circuit_breaker_threshold,
reset_timeout=circuit_breaker_reset,
)
# Initialize async HTTP client
self._client: httpx.AsyncClient | None = None
async def _get_client(self) -> httpx.AsyncClient:
"""Get or create the HTTP client."""
if self._client is None or self._client.is_closed:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
if self.organization:
headers["OpenAI-Organization"] = self.organization
self._client = httpx.AsyncClient(
base_url=self.base_url,
headers=headers,
timeout=httpx.Timeout(self.timeout),
)
return self._client
def _handle_error_response(self, response: httpx.Response) -> None:
"""Convert HTTP error responses to appropriate exceptions."""
status_code = response.status_code
try:
error_data = response.json()
error_message = error_data.get("error", {}).get("message", response.text)
except Exception:
error_message = response.text
if status_code == 401:
raise LLMAuthenticationError(self.PROVIDER_NAME, error_message)
elif status_code == 429:
retry_after = response.headers.get("Retry-After")
retry_after_float = float(retry_after) if retry_after else None
raise LLMRateLimitError(self.PROVIDER_NAME, retry_after=retry_after_float, message=error_message)
elif status_code == 402:
raise LLMQuotaExceededError(self.PROVIDER_NAME, error_message)
elif status_code == 404:
raise LLMModelNotFoundError(self.PROVIDER_NAME, self.model)
elif status_code == 400:
if "context_length" in error_message.lower():
raise LLMContextLengthError(self.PROVIDER_NAME)
raise LLMInvalidRequestError(self.PROVIDER_NAME, error_message)
elif status_code >= 500:
raise LLMServerError(self.PROVIDER_NAME, status_code, error_message)
else:
raise LLMClientError(error_message, self.PROVIDER_NAME, status_code=status_code)
def _make_retry_decorator(self):
"""Create retry decorator with exponential backoff."""
return retry(
stop=stop_after_attempt(self.max_retries),
wait=wait_exponential(multiplier=1, min=1, max=60),
retry=retry_if_exception_type((LLMRateLimitError, LLMServerError, LLMConnectionError)),
before_sleep=before_sleep_log(logger, logging.WARNING),
reraise=True,
)
async def generate(
self,
*,
messages: list[dict] | None = None,
prompt: str | None = None,
temperature: float = 0.7,
max_tokens: int | None = None,
tools: list[dict] | None = None,
stream: bool = False,
stop: list[str] | None = None,
**kwargs: Any,
) -> LLMResponse | AsyncIterator[str]:
"""
Generate a response from OpenAI.
Args:
messages: Chat messages in OpenAI format
prompt: Simple string prompt
temperature: Sampling temperature (0.0 to 2.0)
max_tokens: Maximum tokens to generate
tools: Tool definitions for function calling
stream: If True, returns AsyncIterator
stop: Stop sequences
**kwargs: Additional OpenAI parameters (top_p, presence_penalty, etc.)
Returns:
LLMResponse or AsyncIterator[str] for streaming
"""
# Apply rate limiting before proceeding
await self._apply_rate_limit()
# Check circuit breaker
if not self.circuit_breaker.can_execute():
raise CircuitBreakerOpenError(
self.PROVIDER_NAME,
self.circuit_breaker.failure_count,
self.circuit_breaker.get_reset_time(),
)
if stream:
return self._generate_stream(
messages=messages,
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
tools=tools,
stop=stop,
**kwargs,
)
else:
return await self._generate_non_stream(
messages=messages,
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
tools=tools,
stop=stop,
**kwargs,
)
async def _generate_non_stream(
self,
*,
messages: list[dict] | None = None,
prompt: str | None = None,
temperature: float = 0.7,
max_tokens: int | None = None,
tools: list[dict] | None = None,
stop: list[str] | None = None,
**kwargs: Any,
) -> LLMResponse:
"""Non-streaming generation with retry logic."""
@self._make_retry_decorator()
async def _request():
client = await self._get_client()
# Build request payload
payload = {
"model": self.model,
"messages": self._build_messages(messages, prompt),
"temperature": temperature,
}
if max_tokens is not None:
payload["max_tokens"] = max_tokens
if stop:
payload["stop"] = stop
if tools:
payload["tools"] = tools
payload["tool_choice"] = kwargs.pop("tool_choice", "auto")
# Add any additional kwargs
payload.update(kwargs)
try:
response = await client.post("/chat/completions", json=payload)
except httpx.TimeoutException:
raise LLMTimeoutError(self.PROVIDER_NAME, self.timeout)
except httpx.ConnectError:
raise LLMConnectionError(self.PROVIDER_NAME, self.base_url)
if response.status_code != 200:
self._handle_error_response(response)
return response
try:
response = await _request()
self.circuit_breaker.record_success()
except Exception:
self.circuit_breaker.record_failure()
raise
# Parse response
try:
data = response.json()
choice = data["choices"][0]
message = choice["message"]
usage = data.get("usage", {})
finish_reason = choice.get("finish_reason", "stop")
# Check for tool calls
if "tool_calls" in message:
tool_calls = [
ToolCall(
id=tc["id"],
name=tc["function"]["name"],
arguments=json.loads(tc["function"]["arguments"]),
)
for tc in message["tool_calls"]
]
llm_response = LLMToolResponse(
text=message.get("content", ""),
usage=usage,
model=data.get("model", self.model),
raw_response=data,
finish_reason=finish_reason,
tool_calls=tool_calls,
)
else:
llm_response = LLMResponse(
text=message.get("content", ""),
usage=usage,
model=data.get("model", self.model),
raw_response=data,
finish_reason=finish_reason,
)
self._update_stats(llm_response)
return llm_response
except (KeyError, json.JSONDecodeError) as e:
raise LLMResponseParseError(self.PROVIDER_NAME, response.text) from e
async def _generate_stream(
self,
*,
messages: list[dict] | None = None,
prompt: str | None = None,
temperature: float = 0.7,
max_tokens: int | None = None,
tools: list[dict] | None = None,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[str]:
"""Streaming generation."""
client = await self._get_client()
# Build request payload
payload = {
"model": self.model,
"messages": self._build_messages(messages, prompt),
"temperature": temperature,
"stream": True,
}
if max_tokens is not None:
payload["max_tokens"] = max_tokens
if stop:
payload["stop"] = stop
# Note: tools with streaming have limited support
if tools:
payload["tools"] = tools
payload.update(kwargs)
async def stream_generator():
try:
async with client.stream("POST", "/chat/completions", json=payload) as response:
if response.status_code != 200:
# Read the full response for error handling
await response.aread()
self._handle_error_response(response)
async for line in response.aiter_lines():
if line.startswith("data: "):
data_str = line[6:]
if data_str.strip() == "[DONE]":
break
try:
data = json.loads(data_str)
delta = data["choices"][0].get("delta", {})
content = delta.get("content", "")
if content:
yield content
except (json.JSONDecodeError, KeyError):
continue
self.circuit_breaker.record_success()
except httpx.TimeoutException:
self.circuit_breaker.record_failure()
raise LLMTimeoutError(self.PROVIDER_NAME, self.timeout)
except httpx.ConnectError:
self.circuit_breaker.record_failure()
raise LLMConnectionError(self.PROVIDER_NAME, self.base_url)
except Exception as e:
self.circuit_breaker.record_failure()
if isinstance(e, LLMClientError):
raise
raise LLMStreamError(self.PROVIDER_NAME, str(e)) from e
return stream_generator()
async def close(self) -> None:
"""Close the HTTP client."""
if self._client and not self._client.is_closed:
await self._client.aclose()
self._client = None
|