Spaces:
Running
Running
File size: 13,934 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
"""
Hierarchical Reasoning Model (HRM) Agent.
Implements the HRM architecture with:
- H-Module: High-level planning and decomposition
- L-Module: Low-level execution and refinement
- Adaptive Computation Time (ACT) for dynamic depth
- Halting mechanism based on confidence thresholds
Based on: "Hierarchical Reasoning for Compositional Generalization"
"""
from __future__ import annotations
from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..training.system_config import HRMConfig
@dataclass
class SubProblem:
"""Represents a decomposed subproblem in the hierarchy."""
level: int # Hierarchy level (0 = root, higher = more abstract)
description: str # Natural language description
state: torch.Tensor # Latent state representation
parent_id: int | None = None # Parent subproblem ID
confidence: float = 0.0 # Confidence in this decomposition
@dataclass
class HRMOutput:
"""Output from HRM processing."""
final_state: torch.Tensor # Final processed state
subproblems: list[SubProblem] # Hierarchical decomposition
halt_step: int # Step at which halting occurred
total_ponder_cost: float # Total computation cost (for training)
convergence_path: list[float] # Confidence at each step
class AdaptiveComputationTime(nn.Module):
"""
Adaptive Computation Time (ACT) mechanism for dynamic depth.
Allows the model to "ponder" longer on difficult problems by
dynamically adjusting the number of processing steps.
"""
def __init__(self, hidden_dim: int, epsilon: float = 0.01):
super().__init__()
self.epsilon = epsilon
# Halting unit: predicts probability of halting
self.halt_fc = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Linear(hidden_dim // 2, 1),
nn.Sigmoid(),
)
def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, float]:
"""
Compute halting probabilities.
Args:
hidden_states: [batch, seq, hidden_dim]
Returns:
halt_probs: [batch, seq] probability of halting
ponder_cost: Scalar cost for training
"""
# Compute halting probabilities
halt_logits = self.halt_fc(hidden_states) # [batch, seq, 1]
halt_probs = halt_logits.squeeze(-1) # [batch, seq]
# Ponder cost is the expected number of steps
ponder_cost = halt_probs.sum(dim=-1).mean()
return halt_probs, ponder_cost
class HModule(nn.Module):
"""
H-Module: High-level planning and abstract reasoning.
Responsible for:
- Decomposing problems into subproblems
- Abstract planning and strategy
- Coordinating L-module executions
"""
def __init__(self, config: HRMConfig):
super().__init__()
self.config = config
# Multi-head self-attention for relational reasoning
self.attention = nn.MultiheadAttention(
embed_dim=config.h_dim,
num_heads=8,
dropout=config.dropout,
batch_first=True,
)
# Feed-forward network
self.ffn = nn.Sequential(
nn.Linear(config.h_dim, config.h_dim * 4),
nn.GELU(),
nn.Dropout(config.dropout),
nn.Linear(config.h_dim * 4, config.h_dim),
nn.Dropout(config.dropout),
)
# Layer normalization
self.norm1 = nn.LayerNorm(config.h_dim)
self.norm2 = nn.LayerNorm(config.h_dim)
# Decomposition head: outputs subproblem structure
self.decompose_head = nn.Sequential(
nn.Linear(config.h_dim, config.h_dim),
nn.ReLU(),
nn.Linear(config.h_dim, config.h_dim),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Process input through high-level reasoning.
Args:
x: [batch, seq, h_dim] input tensor
Returns:
[batch, seq, h_dim] processed tensor
"""
# Self-attention for relational reasoning
attn_out, _ = self.attention(x, x, x)
x = self.norm1(x + attn_out)
# Feed-forward processing
ffn_out = self.ffn(x)
x = self.norm2(x + ffn_out)
return x
def decompose(self, x: torch.Tensor) -> torch.Tensor:
"""Generate subproblem representations."""
return self.decompose_head(x)
class LModule(nn.Module):
"""
L-Module: Low-level execution and concrete operations.
Responsible for:
- Executing concrete operations
- Processing individual subproblems
- Generating intermediate results
"""
def __init__(self, config: HRMConfig):
super().__init__()
self.config = config
# Projection from H-module to L-module dimension
self.h_to_l = nn.Linear(config.h_dim, config.l_dim)
# GRU for sequential processing
self.gru = nn.GRU(
input_size=config.l_dim,
hidden_size=config.l_dim,
num_layers=config.num_l_layers,
dropout=config.dropout if config.num_l_layers > 1 else 0,
batch_first=True,
)
# Output projection
self.output_proj = nn.Sequential(
nn.Linear(config.l_dim, config.l_dim * 2),
nn.ReLU(),
nn.Dropout(config.dropout),
nn.Linear(config.l_dim * 2, config.l_dim),
)
# Back-projection to H-module dimension
self.l_to_h = nn.Linear(config.l_dim, config.h_dim)
def forward(self, x: torch.Tensor, h_context: torch.Tensor | None = None) -> tuple[torch.Tensor, torch.Tensor]:
"""
Execute low-level processing.
Args:
x: [batch, seq, h_dim] input from H-module
h_context: Optional hidden state
Returns:
output: [batch, seq, l_dim] processed output
l_to_h: [batch, seq, h_dim] back-projection to H-module
"""
# Project to L-module dimension
x_l = self.h_to_l(x)
# Sequential processing
gru_out, _ = self.gru(x_l, h_context)
# Output processing
output = self.output_proj(gru_out)
# Back-project to H-module dimension for feedback
feedback = self.l_to_h(output)
return output, feedback
class HRMAgent(nn.Module):
"""
Complete Hierarchical Reasoning Model agent.
Combines H-module and L-module with ACT for adaptive computation.
"""
def __init__(self, config: HRMConfig, device: str = "cpu"):
super().__init__()
self.config = config
self.device = device
# Input embedding
self.input_proj = nn.Linear(config.h_dim, config.h_dim)
# Core modules
self.h_module = nn.ModuleList([HModule(config) for _ in range(config.num_h_layers)])
self.l_module = LModule(config)
# Adaptive computation time
self.act = AdaptiveComputationTime(config.h_dim, config.ponder_epsilon)
# State integration
self.integrate = nn.Sequential(
nn.Linear(config.h_dim * 2, config.h_dim),
nn.LayerNorm(config.h_dim),
nn.GELU(),
)
self.to(device)
def forward(
self,
x: torch.Tensor,
max_steps: int | None = None,
return_decomposition: bool = False,
) -> HRMOutput:
"""
Process input through hierarchical reasoning.
Args:
x: [batch, seq, h_dim] input tensor
max_steps: Maximum outer loop steps (defaults to config)
return_decomposition: Whether to return subproblem decomposition
Returns:
HRMOutput containing final state and optional decomposition
"""
batch_size, seq_len, _ = x.shape
max_steps = max_steps or self.config.max_outer_steps
# Initial projection
h_state = self.input_proj(x)
# Tracking
subproblems = []
convergence_path = []
total_ponder_cost = 0.0
# Outer loop: iterative refinement
for step in range(max_steps):
# H-module: high-level planning
for h_layer in self.h_module:
h_state = h_layer(h_state)
# Check halting condition
halt_probs, ponder_cost = self.act(h_state)
total_ponder_cost += ponder_cost
# Average halting probability across sequence
avg_halt_prob = halt_probs.mean().item()
convergence_path.append(avg_halt_prob)
# Generate subproblem decomposition if requested
if return_decomposition:
subproblem_repr = self.h_module[0].decompose(h_state)
# Create subproblem entries (simplified)
for i in range(min(3, seq_len)): # Top 3 subproblems
subproblems.append(
SubProblem(
level=step,
description=f"Subproblem at step {step}, position {i}",
state=subproblem_repr[:, i, :].detach(),
confidence=halt_probs[:, i].mean().item(),
)
)
# Halt if confident enough
if avg_halt_prob >= self.config.halt_threshold:
break
# L-module: low-level execution
l_output, l_feedback = self.l_module(h_state)
# Integrate L-module feedback
h_state = self.integrate(torch.cat([h_state, l_feedback], dim=-1))
return HRMOutput(
final_state=h_state,
subproblems=subproblems,
halt_step=step + 1,
total_ponder_cost=total_ponder_cost,
convergence_path=convergence_path,
)
async def decompose_problem(self, query: str, state: torch.Tensor) -> list[SubProblem]:
"""
Decompose a problem into hierarchical subproblems.
Args:
query: Natural language problem description
state: Initial state representation
Returns:
List of subproblems in hierarchical order
"""
# Ensure state is batched
if state.dim() == 2:
state = state.unsqueeze(0) # [1, seq, dim]
# Forward pass with decomposition
output = self.forward(state, return_decomposition=True)
# Add query context to subproblems
for i, sp in enumerate(output.subproblems):
sp.description = f"{query} -> Level {sp.level} Subproblem {i}"
return output.subproblems
def get_parameter_count(self) -> int:
"""Return total number of trainable parameters."""
return sum(p.numel() for p in self.parameters() if p.requires_grad)
# Training utilities
class HRMLoss(nn.Module):
"""
Combined loss for HRM training.
Includes:
- Task loss (e.g., cross-entropy for classification)
- Ponder cost regularization (encourages efficiency)
- Consistency loss (encourages stable convergence)
"""
def __init__(
self,
task_weight: float = 1.0,
ponder_weight: float = 0.01,
consistency_weight: float = 0.1,
):
super().__init__()
self.task_weight = task_weight
self.ponder_weight = ponder_weight
self.consistency_weight = consistency_weight
def forward(
self,
hrm_output: HRMOutput,
predictions: torch.Tensor,
targets: torch.Tensor,
task_loss_fn: nn.Module,
) -> tuple[torch.Tensor, dict]:
"""
Compute combined loss.
Args:
hrm_output: Output from HRM forward pass
predictions: Model predictions
targets: Ground truth targets
task_loss_fn: Loss function for the task
Returns:
total_loss: Combined loss
loss_dict: Dictionary of individual loss components
"""
# Task loss
task_loss = task_loss_fn(predictions, targets)
# Ponder cost (encourages efficiency)
ponder_loss = hrm_output.total_ponder_cost
# Consistency loss (encourages monotonic convergence)
if len(hrm_output.convergence_path) > 1:
conv_tensor = torch.tensor(hrm_output.convergence_path)
# Penalize non-monotonic increases
diffs = conv_tensor[1:] - conv_tensor[:-1]
consistency_loss = F.relu(-diffs).mean() # Penalize decreases
else:
consistency_loss = torch.tensor(0.0)
# Combine losses
total_loss = (
self.task_weight * task_loss + self.ponder_weight * ponder_loss + self.consistency_weight * consistency_loss
)
loss_dict = {
"total": total_loss.item(),
"task": task_loss.item(),
"ponder": ponder_loss,
"consistency": consistency_loss.item(),
"halt_step": hrm_output.halt_step,
}
return total_loss, loss_dict
def create_hrm_agent(config: HRMConfig, device: str = "cpu") -> HRMAgent:
"""
Factory function to create and initialize HRM agent.
Args:
config: HRM configuration
device: Device to place model on
Returns:
Initialized HRMAgent
"""
agent = HRMAgent(config, device)
# Initialize weights
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.GRU):
for name, param in m.named_parameters():
if "weight" in name:
nn.init.orthogonal_(param)
elif "bias" in name:
nn.init.zeros_(param)
agent.apply(init_weights)
return agent
|