Spaces:
Sleeping
Sleeping
File size: 13,146 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
"""
Tiny Recursive Model (TRM) Agent.
Implements recursive refinement with:
- Deep supervision at all recursion levels
- Convergence detection
- Memory-efficient recursion
- Iterative improvement mechanism
Based on principles from:
- "Recursive Refinement Networks"
- "Deep Supervision for Neural Networks"
"""
from __future__ import annotations
from dataclasses import dataclass
import torch
import torch.nn as nn
from ..training.system_config import TRMConfig
@dataclass
class TRMOutput:
"""Output from TRM recursive processing."""
final_prediction: torch.Tensor # Final refined output
intermediate_predictions: list[torch.Tensor] # Predictions at each recursion
recursion_depth: int # Actual depth used
converged: bool # Whether convergence was achieved
convergence_step: int # Step at which convergence occurred
residual_norms: list[float] # L2 norms of residuals at each step
class RecursiveBlock(nn.Module):
"""
Core recursive processing block.
Applies the same transformation repeatedly, with residual connections.
"""
def __init__(self, config: TRMConfig):
super().__init__()
self.config = config
# Main processing pathway
self.transform = nn.Sequential(
nn.Linear(config.latent_dim, config.hidden_dim),
nn.LayerNorm(config.hidden_dim) if config.use_layer_norm else nn.Identity(),
nn.GELU(),
nn.Dropout(config.dropout),
nn.Linear(config.hidden_dim, config.latent_dim),
nn.LayerNorm(config.latent_dim) if config.use_layer_norm else nn.Identity(),
)
# Residual scaling (learned)
self.residual_scale = nn.Parameter(torch.ones(1))
def forward(self, x: torch.Tensor, iteration: int = 0) -> torch.Tensor: # noqa: ARG002
"""
Apply recursive transformation.
Args:
x: Input tensor [batch, ..., latent_dim]
iteration: Current recursion iteration (reserved for future iteration-dependent behavior)
Returns:
Refined tensor [batch, ..., latent_dim]
"""
# Residual connection with learned scaling
residual = self.transform(x)
return x + self.residual_scale * residual
class DeepSupervisionHead(nn.Module):
"""
Supervision head for intermediate predictions.
Enables training signal at each recursion level.
"""
def __init__(self, latent_dim: int, output_dim: int):
super().__init__()
self.head = nn.Sequential(
nn.Linear(latent_dim, latent_dim // 2),
nn.ReLU(),
nn.Linear(latent_dim // 2, output_dim),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Generate prediction from latent state."""
return self.head(x)
class TRMAgent(nn.Module):
"""
Tiny Recursive Model for iterative refinement.
Features:
- Shared weights across recursions (parameter efficiency)
- Deep supervision at all levels
- Automatic convergence detection
- Residual connections for stable gradients
"""
def __init__(self, config: TRMConfig, output_dim: int | None = None, device: str = "cpu"):
super().__init__()
self.config = config
self.device = device
self.output_dim = output_dim or config.latent_dim
# Initial encoding
self.encoder = nn.Sequential(
nn.Linear(config.latent_dim, config.hidden_dim),
nn.LayerNorm(config.hidden_dim) if config.use_layer_norm else nn.Identity(),
nn.GELU(),
nn.Linear(config.hidden_dim, config.latent_dim),
nn.LayerNorm(config.latent_dim) if config.use_layer_norm else nn.Identity(),
)
# Shared recursive block
self.recursive_block = RecursiveBlock(config)
# Deep supervision heads (one per recursion level)
if config.deep_supervision:
self.supervision_heads = nn.ModuleList(
[DeepSupervisionHead(config.latent_dim, self.output_dim) for _ in range(config.num_recursions)]
)
else:
# Single output head
self.output_head = DeepSupervisionHead(config.latent_dim, self.output_dim)
self.to(device)
def forward(
self,
x: torch.Tensor,
num_recursions: int | None = None,
check_convergence: bool = True,
) -> TRMOutput:
"""
Process input through recursive refinement.
Args:
x: Input tensor [batch, ..., latent_dim]
num_recursions: Number of recursions (defaults to config)
check_convergence: Whether to check for early convergence
Returns:
TRMOutput with final and intermediate predictions
"""
num_recursions = num_recursions or self.config.num_recursions
# Initial encoding
latent = self.encoder(x)
previous_latent = latent.clone()
# Tracking
intermediate_predictions = []
residual_norms = []
converged = False
convergence_step = num_recursions
# Recursive refinement
for i in range(num_recursions):
# Apply recursive transformation
latent = self.recursive_block(latent, iteration=i)
# Generate intermediate prediction
if self.config.deep_supervision and i < len(self.supervision_heads):
pred = self.supervision_heads[i](latent)
else:
pred = self.output_head(latent)
intermediate_predictions.append(pred)
# Check convergence
if check_convergence and i >= self.config.min_recursions:
residual = latent - previous_latent
residual_norm = torch.norm(residual, p=2, dim=-1).mean().item()
residual_norms.append(residual_norm)
if residual_norm < self.config.convergence_threshold:
converged = True
convergence_step = i + 1
break
previous_latent = latent.clone()
# Final prediction
final_pred = intermediate_predictions[-1]
return TRMOutput(
final_prediction=final_pred,
intermediate_predictions=intermediate_predictions,
recursion_depth=len(intermediate_predictions),
converged=converged,
convergence_step=convergence_step,
residual_norms=residual_norms,
)
async def refine_solution(
self,
initial_prediction: torch.Tensor,
num_recursions: int | None = None,
convergence_threshold: float | None = None,
) -> tuple[torch.Tensor, dict]:
"""
Refine an initial prediction through recursive processing.
Args:
initial_prediction: Initial solution [batch, ..., latent_dim]
num_recursions: Maximum recursions (optional)
convergence_threshold: Convergence threshold (optional)
Returns:
refined_solution: Final refined prediction
info: Dictionary with refinement metadata
"""
# Temporarily override convergence threshold if provided
original_threshold = self.config.convergence_threshold
if convergence_threshold is not None:
self.config.convergence_threshold = convergence_threshold
# Process
output = self.forward(
initial_prediction,
num_recursions=num_recursions,
check_convergence=True,
)
# Restore original threshold
self.config.convergence_threshold = original_threshold
info = {
"converged": output.converged,
"convergence_step": output.convergence_step,
"total_recursions": output.recursion_depth,
"final_residual": output.residual_norms[-1] if output.residual_norms else None,
"refinement_path": output.residual_norms,
}
return output.final_prediction, info
def get_parameter_count(self) -> int:
"""Return total number of trainable parameters."""
return sum(p.numel() for p in self.parameters() if p.requires_grad)
class TRMLoss(nn.Module):
"""
Deep supervision loss for TRM.
Applies weighted supervision at all recursion levels,
with exponential decay for deeper levels.
"""
def __init__(
self,
task_loss_fn: nn.Module,
supervision_weight_decay: float = 0.5,
final_weight: float = 1.0,
):
"""
Initialize TRM loss.
Args:
task_loss_fn: Base loss function (e.g., MSE, CrossEntropy)
supervision_weight_decay: Decay factor for intermediate losses
final_weight: Weight for final prediction loss
"""
super().__init__()
self.task_loss_fn = task_loss_fn
self.supervision_weight_decay = supervision_weight_decay
self.final_weight = final_weight
def forward(self, trm_output: TRMOutput, targets: torch.Tensor) -> tuple[torch.Tensor, dict]:
"""
Compute deep supervision loss.
Args:
trm_output: Output from TRM forward pass
targets: Ground truth targets
Returns:
total_loss: Combined loss
loss_dict: Dictionary of loss components
"""
# Final prediction loss (highest weight)
final_loss = self.task_loss_fn(trm_output.final_prediction, targets)
total_loss = self.final_weight * final_loss
# Intermediate supervision losses
intermediate_losses = []
num_intermediate = len(trm_output.intermediate_predictions) - 1
for i, pred in enumerate(trm_output.intermediate_predictions[:-1]):
# Exponential decay: earlier predictions get lower weight
weight = self.supervision_weight_decay ** (num_intermediate - i)
loss = self.task_loss_fn(pred, targets)
intermediate_losses.append(loss.item())
total_loss = total_loss + weight * loss
loss_dict = {
"total": total_loss.item(),
"final": final_loss.item(),
"intermediate_mean": (sum(intermediate_losses) / len(intermediate_losses) if intermediate_losses else 0.0),
"recursion_depth": trm_output.recursion_depth,
"converged": trm_output.converged,
"convergence_step": trm_output.convergence_step,
}
return total_loss, loss_dict
def create_trm_agent(config: TRMConfig, output_dim: int | None = None, device: str = "cpu") -> TRMAgent:
"""
Factory function to create and initialize TRM agent.
Args:
config: TRM configuration
output_dim: Output dimension (defaults to latent_dim)
device: Device to place model on
Returns:
Initialized TRMAgent
"""
agent = TRMAgent(config, output_dim, device)
# Initialize weights with Xavier/He initialization
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
nn.init.zeros_(m.bias)
agent.apply(init_weights)
return agent
# Utility functions for integration
class TRMRefinementWrapper:
"""
Wrapper for using TRM as a refinement step in pipelines.
Provides a clean interface for integrating TRM into larger systems.
"""
def __init__(self, trm_agent: TRMAgent, device: str = "cpu"):
self.trm_agent = trm_agent
self.device = device
self.trm_agent.eval()
@torch.no_grad()
async def refine(
self,
predictions: torch.Tensor,
num_iterations: int = 10,
return_path: bool = False,
) -> torch.Tensor | tuple[torch.Tensor, list[torch.Tensor]]:
"""
Refine predictions using TRM.
Args:
predictions: Initial predictions to refine
num_iterations: Number of refinement iterations
return_path: Whether to return intermediate predictions
Returns:
refined_predictions or (refined_predictions, refinement_path)
"""
# Ensure predictions are on correct device
predictions = predictions.to(self.device)
# Run TRM
output = self.trm_agent(predictions, num_recursions=num_iterations, check_convergence=True)
if return_path:
return output.final_prediction, output.intermediate_predictions
return output.final_prediction
def get_refinement_stats(self, predictions: torch.Tensor) -> dict:
"""Get statistics about the refinement process."""
with torch.no_grad():
output = self.trm_agent(predictions, check_convergence=True)
return {
"converged": output.converged,
"steps_to_convergence": output.convergence_step,
"final_residual": (output.residual_norms[-1] if output.residual_norms else None),
"total_refinement_iterations": output.recursion_depth,
}
|