Spaces:
Running
Running
File size: 16,203 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
"""
Pydantic Settings v2 configuration management for LangGraph Multi-Agent MCTS.
Provides:
- Secure configuration loading from environment variables and .env files
- Type-safe settings with validation
- Secrets protection using SecretStr
- MCTS parameter bounds validation
- Support for multiple LLM providers
"""
from enum import Enum
from pydantic import (
Field,
SecretStr,
field_validator,
model_validator,
)
from pydantic_settings import BaseSettings, SettingsConfigDict
class LLMProvider(str, Enum):
"""Supported LLM providers."""
OPENAI = "openai"
ANTHROPIC = "anthropic"
LMSTUDIO = "lmstudio"
class LogLevel(str, Enum):
"""Supported log levels."""
DEBUG = "DEBUG"
INFO = "INFO"
WARNING = "WARNING"
ERROR = "ERROR"
CRITICAL = "CRITICAL"
class MCTSImplementation(str, Enum):
"""MCTS implementation variants."""
BASELINE = "baseline" # Original MCTS core
NEURAL = "neural" # Neural-guided AlphaZero-style MCTS
class Settings(BaseSettings):
"""
Application settings with security-first configuration.
All sensitive values use SecretStr to prevent accidental exposure in logs.
Configuration is loaded from environment variables with .env file support.
"""
model_config = SettingsConfigDict(
env_file=".env",
env_file_encoding="utf-8",
case_sensitive=True,
extra="ignore",
validate_default=True,
)
# LLM Provider Configuration
LLM_PROVIDER: LLMProvider = Field(
default=LLMProvider.OPENAI, description="LLM provider to use (openai, anthropic, lmstudio)"
)
# API Keys (Secrets)
OPENAI_API_KEY: SecretStr | None = Field(
default=None, description="OpenAI API key (required if using OpenAI provider)"
)
ANTHROPIC_API_KEY: SecretStr | None = Field(
default=None, description="Anthropic API key (required if using Anthropic provider)"
)
BRAINTRUST_API_KEY: SecretStr | None = Field(
default=None, description="Braintrust API key for experiment tracking (optional)"
)
PINECONE_API_KEY: SecretStr | None = Field(
default=None, description="Pinecone API key for vector storage (optional)"
)
PINECONE_HOST: str | None = Field(
default=None, description="Pinecone host URL (e.g., https://index.svc.environment.pinecone.io)"
)
# Local LLM Configuration
LMSTUDIO_BASE_URL: str | None = Field(
default="http://localhost:1234/v1", description="LM Studio API base URL for local inference"
)
LMSTUDIO_MODEL: str | None = Field(default=None, description="LM Studio model identifier (e.g., liquid/lfm2-1.2b)")
# MCTS Configuration with bounds validation
MCTS_ENABLED: bool = Field(default=True, description="Enable MCTS for agent decision-making")
MCTS_IMPL: MCTSImplementation = Field(
default=MCTSImplementation.BASELINE, description="MCTS implementation variant to use"
)
MCTS_ITERATIONS: int = Field(default=100, ge=1, le=10000, description="Number of MCTS iterations (1-10000)")
MCTS_C: float = Field(
default=1.414, ge=0.0, le=10.0, description="MCTS exploration weight (UCB1 constant, 0.0-10.0)"
)
# Random seed for reproducibility
SEED: int | None = Field(default=None, ge=0, description="Random seed for reproducibility (optional)")
# LangSmith Configuration for tracing and evaluation
LANGSMITH_API_KEY: SecretStr | None = Field(
default=None, description="LangSmith API key for tracing and evaluation (optional)"
)
LANGSMITH_PROJECT: str = Field(default="langgraph-mcts", description="LangSmith project name")
LANGCHAIN_TRACING_V2: bool = Field(default=False, description="Enable LangChain tracing v2")
LANGCHAIN_ENDPOINT: str = Field(default="https://api.smith.langchain.com", description="LangChain API endpoint")
# Weights & Biases Configuration for experiment tracking
WANDB_API_KEY: SecretStr | None = Field(
default=None, description="Weights & Biases API key for experiment tracking (optional)"
)
WANDB_PROJECT: str = Field(default="langgraph-mcts", description="W&B project name")
WANDB_ENTITY: str | None = Field(default=None, description="W&B entity (username or team name)")
WANDB_MODE: str = Field(default="online", description="W&B mode: online, offline, or disabled")
# Logging Configuration
LOG_LEVEL: LogLevel = Field(default=LogLevel.INFO, description="Application log level")
# OpenTelemetry Configuration
OTEL_EXPORTER_OTLP_ENDPOINT: str | None = Field(
default=None, description="OpenTelemetry OTLP exporter endpoint URL"
)
# S3 Storage Configuration
S3_BUCKET: str | None = Field(default=None, description="S3 bucket name for artifact storage")
S3_PREFIX: str = Field(default="mcts-artifacts", description="S3 key prefix for stored artifacts")
S3_REGION: str = Field(default="us-east-1", description="AWS region for S3 bucket")
# Network Configuration (security)
HTTP_TIMEOUT_SECONDS: int = Field(default=30, ge=1, le=300, description="HTTP request timeout in seconds")
HTTP_MAX_RETRIES: int = Field(default=3, ge=0, le=10, description="Maximum HTTP request retries")
# Security Settings
MAX_QUERY_LENGTH: int = Field(
default=10000, ge=1, le=100000, description="Maximum allowed query length in characters"
)
RATE_LIMIT_REQUESTS_PER_MINUTE: int = Field(
default=60, ge=1, le=1000, description="Rate limit for API requests per minute"
)
@field_validator("OPENAI_API_KEY")
@classmethod
def validate_openai_key_format(cls, v: SecretStr | None) -> SecretStr | None:
"""Validate OpenAI API key format without exposing the value."""
if v is not None:
secret_value = v.get_secret_value()
# Check for obviously invalid patterns
if secret_value in ("", "your-api-key-here", "sk-xxx", "REPLACE_ME"):
raise ValueError("OpenAI API key appears to be a placeholder value")
if not secret_value.startswith("sk-"):
raise ValueError("OpenAI API key should start with 'sk-'")
if len(secret_value) < 20:
raise ValueError("OpenAI API key appears to be too short")
return v
@field_validator("ANTHROPIC_API_KEY")
@classmethod
def validate_anthropic_key_format(cls, v: SecretStr | None) -> SecretStr | None:
"""Validate Anthropic API key format without exposing the value."""
if v is not None:
secret_value = v.get_secret_value()
# Check for obviously invalid patterns
if secret_value in ("", "your-api-key-here", "REPLACE_ME"):
raise ValueError("Anthropic API key appears to be a placeholder value")
if len(secret_value) < 20:
raise ValueError("Anthropic API key appears to be too short")
return v
@field_validator("BRAINTRUST_API_KEY")
@classmethod
def validate_braintrust_key_format(cls, v: SecretStr | None) -> SecretStr | None:
"""Validate Braintrust API key format without exposing the value."""
if v is not None:
secret_value = v.get_secret_value()
# Check for obviously invalid patterns
if secret_value in ("", "your-api-key-here", "REPLACE_ME"):
raise ValueError("Braintrust API key appears to be a placeholder value")
if len(secret_value) < 20:
raise ValueError("Braintrust API key appears to be too short")
return v
@field_validator("PINECONE_API_KEY")
@classmethod
def validate_pinecone_key_format(cls, v: SecretStr | None) -> SecretStr | None:
"""Validate Pinecone API key format without exposing the value."""
if v is not None:
secret_value = v.get_secret_value()
# Check for obviously invalid patterns
if secret_value in ("", "your-api-key-here", "REPLACE_ME"):
raise ValueError("Pinecone API key appears to be a placeholder value")
if len(secret_value) < 20:
raise ValueError("Pinecone API key appears to be too short")
return v
@field_validator("LANGSMITH_API_KEY")
@classmethod
def validate_langsmith_key_format(cls, v: SecretStr | None) -> SecretStr | None:
"""Validate LangSmith API key format without exposing the value."""
if v is not None:
secret_value = v.get_secret_value()
if secret_value in ("", "your-api-key-here", "REPLACE_ME"):
raise ValueError("LangSmith API key appears to be a placeholder value")
if len(secret_value) < 20:
raise ValueError("LangSmith API key appears to be too short")
return v
@field_validator("WANDB_API_KEY")
@classmethod
def validate_wandb_key_format(cls, v: SecretStr | None) -> SecretStr | None:
"""Validate Weights & Biases API key format without exposing the value."""
if v is not None:
secret_value = v.get_secret_value()
if secret_value in ("", "your-api-key-here", "REPLACE_ME"):
raise ValueError("W&B API key appears to be a placeholder value")
if len(secret_value) < 20:
raise ValueError("W&B API key appears to be too short")
return v
@field_validator("PINECONE_HOST")
@classmethod
def validate_pinecone_host(cls, v: str | None) -> str | None:
"""Validate Pinecone host URL format."""
if v is not None and v != "":
if not v.startswith("https://"):
raise ValueError("Pinecone host must start with https://")
if "pinecone.io" not in v:
raise ValueError("Pinecone host should be a valid pinecone.io URL")
return v
@field_validator("LMSTUDIO_BASE_URL")
@classmethod
def validate_lmstudio_url(cls, v: str | None) -> str | None:
"""Validate LM Studio base URL format."""
if v is not None:
if not v.startswith(("http://", "https://")):
raise ValueError("LM Studio base URL must start with http:// or https://")
# Warn if not localhost (potential security concern)
if not any(host in v for host in ("localhost", "127.0.0.1", "::1")):
import warnings
warnings.warn(
"LM Studio URL points to non-localhost address. Ensure this is intentional and secure.",
UserWarning,
stacklevel=2,
)
return v
@field_validator("OTEL_EXPORTER_OTLP_ENDPOINT")
@classmethod
def validate_otel_endpoint(cls, v: str | None) -> str | None:
"""Validate OpenTelemetry endpoint URL."""
if v is not None and v != "" and not v.startswith(("http://", "https://", "grpc://")):
raise ValueError("OpenTelemetry endpoint must start with http://, https://, or grpc://")
return v
@field_validator("S3_BUCKET")
@classmethod
def validate_s3_bucket_name(cls, v: str | None) -> str | None:
"""Validate S3 bucket name format."""
if v is not None:
# S3 bucket naming rules
if len(v) < 3 or len(v) > 63:
raise ValueError("S3 bucket name must be 3-63 characters long")
if not v.replace("-", "").replace(".", "").isalnum():
raise ValueError("S3 bucket name can only contain lowercase letters, numbers, hyphens, and periods")
if v.startswith("-") or v.endswith("-"):
raise ValueError("S3 bucket name cannot start or end with a hyphen")
return v
@model_validator(mode="after")
def validate_provider_credentials(self) -> "Settings":
"""Ensure required API keys are provided for the selected provider."""
if self.LLM_PROVIDER == LLMProvider.OPENAI:
if self.OPENAI_API_KEY is None:
raise ValueError(
"OPENAI_API_KEY is required when using OpenAI provider. "
"Set the OPENAI_API_KEY environment variable."
)
elif self.LLM_PROVIDER == LLMProvider.ANTHROPIC:
if self.ANTHROPIC_API_KEY is None:
raise ValueError(
"ANTHROPIC_API_KEY is required when using Anthropic provider. "
"Set the ANTHROPIC_API_KEY environment variable."
)
elif self.LLM_PROVIDER == LLMProvider.LMSTUDIO and self.LMSTUDIO_BASE_URL is None:
raise ValueError("LMSTUDIO_BASE_URL is required when using LM Studio provider.")
return self
def get_api_key(self) -> str | None:
"""
Get the API key for the current provider.
Returns the secret value - use with caution to avoid logging.
"""
if self.LLM_PROVIDER == LLMProvider.OPENAI and self.OPENAI_API_KEY:
return self.OPENAI_API_KEY.get_secret_value()
elif self.LLM_PROVIDER == LLMProvider.ANTHROPIC and self.ANTHROPIC_API_KEY:
return self.ANTHROPIC_API_KEY.get_secret_value()
return None
def safe_dict(self) -> dict:
"""
Return settings as dictionary with secrets masked.
Safe for logging and display purposes.
"""
data = self.model_dump()
# Mask all sensitive fields
secret_fields = [
"OPENAI_API_KEY",
"ANTHROPIC_API_KEY",
"BRAINTRUST_API_KEY",
"PINECONE_API_KEY",
"LANGSMITH_API_KEY",
"WANDB_API_KEY",
]
for field in secret_fields:
if field in data and data[field]:
data[field] = "***MASKED***"
return data
def get_braintrust_api_key(self) -> str | None:
"""
Get the Braintrust API key if configured.
Returns the secret value - use with caution to avoid logging.
"""
if self.BRAINTRUST_API_KEY:
return self.BRAINTRUST_API_KEY.get_secret_value()
return None
def get_pinecone_api_key(self) -> str | None:
"""
Get the Pinecone API key if configured.
Returns the secret value - use with caution to avoid logging.
"""
if self.PINECONE_API_KEY:
return self.PINECONE_API_KEY.get_secret_value()
return None
def get_langsmith_api_key(self) -> str | None:
"""
Get the LangSmith API key if configured.
Returns the secret value - use with caution to avoid logging.
"""
if self.LANGSMITH_API_KEY:
return self.LANGSMITH_API_KEY.get_secret_value()
return None
def get_wandb_api_key(self) -> str | None:
"""
Get the Weights & Biases API key if configured.
Returns the secret value - use with caution to avoid logging.
"""
if self.WANDB_API_KEY:
return self.WANDB_API_KEY.get_secret_value()
return None
def __repr__(self) -> str:
"""Safe string representation that doesn't expose secrets."""
return f"Settings(LLM_PROVIDER={self.LLM_PROVIDER}, MCTS_ENABLED={self.MCTS_ENABLED}, MCTS_IMPL={self.MCTS_IMPL}, LOG_LEVEL={self.LOG_LEVEL})"
# Global settings instance (lazily loaded)
_settings: Settings | None = None
def get_settings() -> Settings:
"""
Get the global settings instance.
Settings are loaded once and cached. To reload, call reset_settings() first.
Returns:
Settings: Application configuration instance
Raises:
ValidationError: If configuration is invalid
"""
global _settings
if _settings is None:
_settings = Settings()
return _settings
def reset_settings() -> None:
"""
Reset the global settings instance.
Forces settings to be reloaded from environment on next get_settings() call.
Useful for testing.
"""
global _settings
_settings = None
# Type exports for external use
__all__ = [
"Settings",
"LLMProvider",
"LogLevel",
"MCTSImplementation",
"get_settings",
"reset_settings",
]
|