Spaces:
Sleeping
Sleeping
File size: 15,749 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
"""
Tactical Data Augmentation Module.
Provides domain-specific data augmentation techniques for:
- Cybersecurity threat scenarios
- Military tactical situations
- Multi-step reasoning problems
These augmentations help increase training data diversity and improve
model robustness for tactical analysis tasks.
"""
import logging
import random
from dataclasses import dataclass
from .dataset_loader import DatasetSample
logger = logging.getLogger(__name__)
@dataclass
class AugmentationResult:
"""Result of data augmentation."""
original: DatasetSample
augmented: list[DatasetSample]
augmentation_types: list[str]
class TacticalAugmenter:
"""
Domain-specific data augmentation for tactical analysis.
Augmentation techniques:
- Paraphrasing tactical scenarios
- Varying urgency levels
- Adding/removing constraints
- Scenario parameter variation
- Threat actor substitution
- Temporal shifting
"""
# Tactical scenario templates
URGENCY_MODIFIERS = {
"high": ["IMMEDIATE", "CRITICAL", "URGENT", "TIME-SENSITIVE"],
"medium": ["PRIORITY", "IMPORTANT", "ATTENTION REQUIRED"],
"low": ["ROUTINE", "STANDARD", "WHEN POSSIBLE"],
}
THREAT_ACTORS = [
"APT28",
"APT29",
"Lazarus Group",
"Cozy Bear",
"Fancy Bear",
"Unknown Actor",
"Nation-State Actor",
"Criminal Organization",
]
ATTACK_VECTORS = [
"phishing",
"spear-phishing",
"watering hole",
"supply chain compromise",
"zero-day exploit",
"credential stuffing",
"brute force",
"social engineering",
]
MILITARY_OBJECTIVES = [
"secure perimeter",
"establish forward position",
"conduct reconnaissance",
"neutralize threat",
"protect assets",
"maintain operational security",
"coordinate with allied forces",
"execute tactical withdrawal",
]
ENVIRONMENTAL_CONDITIONS = [
"night operations",
"adverse weather",
"limited visibility",
"urban terrain",
"mountainous region",
"coastal area",
"contested airspace",
"electronic warfare environment",
]
def __init__(self, seed: int = 42):
"""
Initialize augmenter.
Args:
seed: Random seed for reproducibility
"""
self.rng = random.Random(seed)
self._augmentation_count = 0
def augment_sample(
self,
sample: DatasetSample,
num_augmentations: int = 3,
techniques: list[str] | None = None,
) -> AugmentationResult:
"""
Augment a single sample.
Args:
sample: Original dataset sample
num_augmentations: Number of augmented versions to create
techniques: Specific techniques to use (None for random selection)
Returns:
AugmentationResult with augmented samples
"""
available_techniques = [
"urgency_variation",
"parameter_substitution",
"constraint_addition",
"temporal_shift",
"perspective_change",
]
if techniques:
available_techniques = [t for t in techniques if t in available_techniques]
augmented_samples = []
used_techniques = []
for _i in range(num_augmentations):
technique = self.rng.choice(available_techniques)
used_techniques.append(technique)
augmented_text = self._apply_technique(sample.text, sample.domain, technique)
aug_sample = DatasetSample(
id=f"{sample.id}_aug_{self._augmentation_count}",
text=augmented_text,
metadata={
**sample.metadata,
"augmentation": technique,
"original_id": sample.id,
},
labels=sample.labels,
difficulty=sample.difficulty,
domain=sample.domain,
reasoning_steps=sample.reasoning_steps,
)
augmented_samples.append(aug_sample)
self._augmentation_count += 1
return AugmentationResult(
original=sample,
augmented=augmented_samples,
augmentation_types=used_techniques,
)
def _apply_technique(self, text: str, domain: str | None, technique: str) -> str:
"""Apply specific augmentation technique."""
if technique == "urgency_variation":
return self._augment_urgency(text)
elif technique == "parameter_substitution":
return self._augment_parameters(text, domain)
elif technique == "constraint_addition":
return self._augment_constraints(text, domain)
elif technique == "temporal_shift":
return self._augment_temporal(text)
elif technique == "perspective_change":
return self._augment_perspective(text, domain)
else:
return text
def _augment_urgency(self, text: str) -> str:
"""Vary urgency level in the text."""
urgency_level = self.rng.choice(list(self.URGENCY_MODIFIERS.keys()))
modifier = self.rng.choice(self.URGENCY_MODIFIERS[urgency_level])
# Add urgency prefix
if urgency_level == "high":
return f"[{modifier}] {text}"
elif urgency_level == "medium":
return f"{modifier}: {text}"
else:
return f"({modifier}) {text}"
def _augment_parameters(self, text: str, domain: str | None) -> str:
"""Substitute domain-specific parameters."""
if domain == "cybersecurity" or "cyber" in text.lower():
# Substitute threat actors
for actor in self.THREAT_ACTORS:
if actor in text:
new_actor = self.rng.choice([a for a in self.THREAT_ACTORS if a != actor])
text = text.replace(actor, new_actor)
break
# Substitute attack vectors
for vector in self.ATTACK_VECTORS:
if vector in text.lower():
new_vector = self.rng.choice([v for v in self.ATTACK_VECTORS if v != vector])
text = text.replace(vector, new_vector)
break
elif domain == "military" or any(kw in text.lower() for kw in ["tactical", "military", "reconnaissance"]):
# Substitute objectives
for obj in self.MILITARY_OBJECTIVES:
if obj in text.lower():
new_obj = self.rng.choice([o for o in self.MILITARY_OBJECTIVES if o != obj])
text = text.replace(obj, new_obj)
break
return text
def _augment_constraints(self, text: str, domain: str | None) -> str:
"""Add additional constraints to the scenario."""
constraints = []
if domain == "cybersecurity":
constraints = [
"with limited network visibility",
"under active attack",
"with compromised credentials",
"during maintenance window",
"with restricted access to logs",
]
elif domain == "military":
constraints = [
"with limited ammunition",
"under communication blackout",
"with reduced personnel",
"in contested environment",
"with time constraint of 2 hours",
]
else:
constraints = [
"with incomplete information",
"under time pressure",
"with resource constraints",
"considering multiple stakeholders",
"with conflicting objectives",
]
if constraints:
constraint = self.rng.choice(constraints)
return f"{text} [{constraint}]"
return text
def _augment_temporal(self, text: str) -> str:
"""Shift temporal context."""
temporal_contexts = [
"In the past 24 hours, ",
"Over the next week, ",
"Immediately, ",
"During the upcoming operation, ",
"Following initial assessment, ",
]
context = self.rng.choice(temporal_contexts)
return f"{context}{text.lower()}" if text else text
def _augment_perspective(self, text: str, domain: str | None) -> str:
"""Change analytical perspective."""
perspectives = {
"cybersecurity": [
"From a threat hunter's perspective: ",
"Considering the attacker's viewpoint: ",
"For incident response purposes: ",
"From a risk management standpoint: ",
],
"military": [
"From the commander's perspective: ",
"Considering enemy capabilities: ",
"For tactical planning purposes: ",
"From a logistics standpoint: ",
],
"default": [
"From an analytical perspective: ",
"Considering all factors: ",
"For decision-making purposes: ",
"From a strategic viewpoint: ",
],
}
domain_perspectives = perspectives.get(domain or "default", perspectives["default"])
perspective = self.rng.choice(domain_perspectives)
return f"{perspective}{text}"
def augment_batch(
self,
samples: list[DatasetSample],
augmentations_per_sample: int = 2,
) -> list[DatasetSample]:
"""
Augment a batch of samples.
Args:
samples: List of original samples
augmentations_per_sample: Number of augmentations per sample
Returns:
List of all samples (original + augmented)
"""
all_samples = list(samples) # Keep originals
for sample in samples:
result = self.augment_sample(sample, num_augmentations=augmentations_per_sample)
all_samples.extend(result.augmented)
logger.info(
f"Augmented {len(samples)} samples to {len(all_samples)} (+{len(all_samples) - len(samples)} augmented)"
)
return all_samples
def create_tactical_scenarios(self, base_samples: list[DatasetSample]) -> list[DatasetSample]:
"""
Create tactical scenario variations from base samples.
Combines multiple augmentation techniques to create
diverse tactical scenarios for training.
Args:
base_samples: Base dataset samples
Returns:
Extended list with tactical scenario variations
"""
scenarios = list(base_samples)
for sample in base_samples:
# Create high-stakes variant
high_stakes = self._augment_urgency(sample.text)
high_stakes = self._augment_constraints(high_stakes, sample.domain)
scenarios.append(
DatasetSample(
id=f"{sample.id}_highstakes_{self._augmentation_count}",
text=high_stakes,
metadata={
**sample.metadata,
"scenario_type": "high_stakes",
"original_id": sample.id,
},
labels=sample.labels,
difficulty="hard", # High stakes scenarios are harder
domain=sample.domain,
reasoning_steps=sample.reasoning_steps,
)
)
self._augmentation_count += 1
# Create multi-perspective variant
if self.rng.random() > 0.5:
multi_perspective = self._augment_perspective(sample.text, sample.domain)
scenarios.append(
DatasetSample(
id=f"{sample.id}_multiperspective_{self._augmentation_count}",
text=multi_perspective,
metadata={
**sample.metadata,
"scenario_type": "multi_perspective",
"original_id": sample.id,
},
labels=sample.labels,
difficulty=sample.difficulty,
domain=sample.domain,
reasoning_steps=sample.reasoning_steps,
)
)
self._augmentation_count += 1
logger.info(f"Created {len(scenarios) - len(base_samples)} tactical scenarios")
return scenarios
class CyberSecurityAugmenter(TacticalAugmenter):
"""
Specialized augmenter for cybersecurity scenarios.
Focuses on:
- MITRE ATT&CK technique variations
- Threat intelligence context
- Incident response scenarios
"""
MITRE_TACTICS = [
"Initial Access",
"Execution",
"Persistence",
"Privilege Escalation",
"Defense Evasion",
"Credential Access",
"Discovery",
"Lateral Movement",
"Collection",
"Exfiltration",
"Impact",
]
SEVERITY_LEVELS = ["LOW", "MEDIUM", "HIGH", "CRITICAL"]
def augment_with_mitre_context(self, sample: DatasetSample) -> DatasetSample:
"""
Add MITRE ATT&CK context to sample.
Args:
sample: Original sample
Returns:
Augmented sample with MITRE context
"""
tactic = self.rng.choice(self.MITRE_TACTICS)
severity = self.rng.choice(self.SEVERITY_LEVELS)
augmented_text = f"[MITRE ATT&CK: {tactic}] [Severity: {severity}] {sample.text}"
return DatasetSample(
id=f"{sample.id}_mitre_{self._augmentation_count}",
text=augmented_text,
metadata={
**sample.metadata,
"mitre_tactic": tactic,
"severity": severity,
},
labels=sample.labels,
difficulty=sample.difficulty,
domain="cybersecurity",
reasoning_steps=sample.reasoning_steps,
)
class MilitaryTacticalAugmenter(TacticalAugmenter):
"""
Specialized augmenter for military tactical scenarios.
Focuses on:
- Environmental condition variations
- Force composition changes
- Mission objective variations
"""
FORCE_COMPOSITIONS = [
"infantry platoon",
"mechanized company",
"special operations team",
"combined arms battalion",
"air assault element",
]
def augment_with_force_composition(self, sample: DatasetSample) -> DatasetSample:
"""
Add force composition context to sample.
Args:
sample: Original sample
Returns:
Augmented sample with force composition
"""
force = self.rng.choice(self.FORCE_COMPOSITIONS)
condition = self.rng.choice(self.ENVIRONMENTAL_CONDITIONS)
augmented_text = f"[Force: {force}] [Conditions: {condition}] {sample.text}"
return DatasetSample(
id=f"{sample.id}_tactical_{self._augmentation_count}",
text=augmented_text,
metadata={
**sample.metadata,
"force_composition": force,
"environmental_conditions": condition,
},
labels=sample.labels,
difficulty=sample.difficulty,
domain="military",
reasoning_steps=sample.reasoning_steps,
)
|