Spaces:
Running
Running
File size: 16,969 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
"""
Base async agent class for Multi-Agent MCTS Framework.
Provides common patterns for all agents with hook points for metrics,
logging, and extensibility.
"""
import asyncio
import logging
import time
import uuid
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Protocol
from src.adapters.llm.base import LLMClient, LLMResponse
@dataclass
class AgentContext:
"""
Context passed to agent during processing.
Contains all information needed for the agent to process a request.
"""
query: str
session_id: str = field(default_factory=lambda: str(uuid.uuid4()))
rag_context: str | None = None
metadata: dict = field(default_factory=dict)
conversation_history: list[dict] = field(default_factory=list)
max_iterations: int = 5
temperature: float = 0.7
additional_context: dict = field(default_factory=dict)
def to_dict(self) -> dict:
"""Convert context to dictionary."""
return {
"query": self.query,
"session_id": self.session_id,
"rag_context": self.rag_context,
"metadata": self.metadata,
"conversation_history": self.conversation_history,
"max_iterations": self.max_iterations,
"temperature": self.temperature,
"additional_context": self.additional_context,
}
@dataclass
class AgentResult:
"""
Result from agent processing.
Standardized result format for all agents.
"""
response: str
confidence: float = 0.0
metadata: dict = field(default_factory=dict)
agent_name: str = ""
processing_time_ms: float = 0.0
token_usage: dict = field(default_factory=dict)
intermediate_steps: list[dict] = field(default_factory=list)
created_at: datetime = field(default_factory=datetime.utcnow)
error: str | None = None
success: bool = True
def to_dict(self) -> dict:
"""Convert result to dictionary."""
return {
"response": self.response,
"confidence": self.confidence,
"metadata": self.metadata,
"agent_name": self.agent_name,
"processing_time_ms": self.processing_time_ms,
"token_usage": self.token_usage,
"intermediate_steps": self.intermediate_steps,
"created_at": self.created_at.isoformat(),
"error": self.error,
"success": self.success,
}
class MetricsCollector(Protocol):
"""Protocol for metrics collection."""
def record_latency(self, agent_name: str, latency_ms: float) -> None: ...
def record_tokens(self, agent_name: str, tokens: int) -> None: ...
def record_error(self, agent_name: str, error_type: str) -> None: ...
def record_success(self, agent_name: str) -> None: ...
class NoOpMetricsCollector:
"""Default no-op metrics collector."""
def record_latency(self, agent_name: str, latency_ms: float) -> None:
pass
def record_tokens(self, agent_name: str, tokens: int) -> None:
pass
def record_error(self, agent_name: str, error_type: str) -> None:
pass
def record_success(self, agent_name: str) -> None:
pass
class AsyncAgentBase(ABC):
"""
Base class for async agents in the Multi-Agent MCTS Framework.
Features:
- Async processing by default
- Hook points for metrics/logging
- Lifecycle management
- Error handling patterns
- Backward compatibility with existing framework
"""
def __init__(
self,
model_adapter: LLMClient,
logger: Any = None,
name: str | None = None,
metrics_collector: MetricsCollector | None = None,
**config: Any,
):
"""
Initialize async agent.
Args:
model_adapter: LLM client for generating responses
logger: Logger instance (uses standard logging if None)
name: Agent name (uses class name if None)
metrics_collector: Optional metrics collector
**config: Additional configuration parameters
"""
self.model_adapter = model_adapter
self.logger = logger or logging.getLogger(self.__class__.__name__)
self.name = name or self.__class__.__name__
self.metrics = metrics_collector or NoOpMetricsCollector()
self.config = config
# Runtime state
self._request_count = 0
self._total_processing_time = 0.0
self._error_count = 0
self._initialized = False
async def initialize(self) -> None:
"""
Initialize agent resources.
Override this method to perform async initialization tasks
like loading prompts, setting up connections, etc.
"""
self._initialized = True
self.logger.info(f"Agent {self.name} initialized")
async def shutdown(self) -> None:
"""
Clean up agent resources.
Override this method to perform cleanup tasks.
"""
self._initialized = False
self.logger.info(f"Agent {self.name} shutdown")
async def __aenter__(self):
"""Async context manager entry."""
await self.initialize()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit."""
await self.shutdown()
# Hook points for subclasses
async def pre_process(self, context: AgentContext) -> AgentContext:
"""
Hook called before processing.
Override to modify context or perform pre-processing.
Args:
context: Agent context
Returns:
Potentially modified context
"""
return context
async def post_process(self, _context: AgentContext, result: AgentResult) -> AgentResult:
"""
Hook called after processing.
Override to modify result or perform post-processing.
Args:
context: Agent context
result: Agent result
Returns:
Potentially modified result
"""
return result
async def on_error(self, _context: AgentContext, error: Exception) -> AgentResult:
"""
Hook called when processing fails.
Override to customize error handling.
Args:
context: Agent context
error: The exception that occurred
Returns:
Error result
"""
self.logger.error(f"Agent {self.name} error: {error}")
self._error_count += 1
self.metrics.record_error(self.name, type(error).__name__)
return AgentResult(
response="",
confidence=0.0,
agent_name=self.name,
error=str(error),
success=False,
)
@abstractmethod
async def _process_impl(self, context: AgentContext) -> AgentResult:
"""
Core processing logic to be implemented by subclasses.
Args:
context: Agent context with all necessary information
Returns:
AgentResult with response and metadata
"""
pass
async def process(
self,
query: str | None = None,
context: AgentContext | None = None,
*,
rag_context: str | None = None,
**kwargs: Any,
) -> dict:
"""
Process a query and return structured response.
This method provides backward compatibility with the existing
LangGraphMultiAgentFramework while using the new async patterns.
Args:
query: Query string (if not using context object)
context: Full context object (if not using query string)
rag_context: RAG context (used if query provided)
**kwargs: Additional parameters merged into context
Returns:
Dictionary with 'response' and 'metadata' keys for backward compatibility
"""
# Build context if not provided
if context is None:
if query is None:
raise ValueError("Either 'query' or 'context' must be provided")
context = AgentContext(
query=query,
rag_context=rag_context,
additional_context=kwargs,
)
# Ensure initialized
if not self._initialized:
await self.initialize()
# Track timing
start_time = time.perf_counter()
try:
# Pre-processing hook
context = await self.pre_process(context)
# Core processing
result = await self._process_impl(context)
# Calculate timing
elapsed_ms = (time.perf_counter() - start_time) * 1000
result.processing_time_ms = elapsed_ms
result.agent_name = self.name
# Update stats
self._request_count += 1
self._total_processing_time += elapsed_ms
self.metrics.record_latency(self.name, elapsed_ms)
if result.token_usage:
self.metrics.record_tokens(self.name, result.token_usage.get("total_tokens", 0))
self.metrics.record_success(self.name)
# Post-processing hook
result = await self.post_process(context, result)
self.logger.info(f"Agent {self.name} processed query in {elapsed_ms:.2f}ms")
except Exception as e:
result = await self.on_error(context, e)
result.processing_time_ms = (time.perf_counter() - start_time) * 1000
# Return backward-compatible format
return {
"response": result.response,
"metadata": {
**result.metadata,
"agent_name": result.agent_name,
"confidence": result.confidence,
"processing_time_ms": result.processing_time_ms,
"token_usage": result.token_usage,
"success": result.success,
"error": result.error,
},
}
@property
def stats(self) -> dict:
"""Get agent statistics."""
return {
"name": self.name,
"request_count": self._request_count,
"total_processing_time_ms": self._total_processing_time,
"error_count": self._error_count,
"average_processing_time_ms": (
self._total_processing_time / self._request_count if self._request_count > 0 else 0.0
),
"initialized": self._initialized,
}
async def generate_llm_response(
self,
prompt: str | None = None,
messages: list[dict] | None = None,
temperature: float = 0.7,
max_tokens: int | None = None,
**kwargs: Any,
) -> LLMResponse:
"""
Convenience method to generate LLM response with error handling.
Args:
prompt: Simple string prompt
messages: Chat messages
temperature: Sampling temperature
max_tokens: Max tokens to generate
**kwargs: Additional parameters
Returns:
LLMResponse from the model adapter
"""
response = await self.model_adapter.generate(
prompt=prompt,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
**kwargs,
)
return response
class CompositeAgent(AsyncAgentBase):
"""
Agent that combines multiple sub-agents.
Useful for creating complex agents from simpler building blocks.
"""
def __init__(
self,
model_adapter: LLMClient,
logger: Any = None,
name: str = "CompositeAgent",
sub_agents: list[AsyncAgentBase] | None = None,
**config: Any,
):
super().__init__(model_adapter, logger, name, **config)
self.sub_agents = sub_agents or []
def add_agent(self, agent: AsyncAgentBase) -> None:
"""Add a sub-agent."""
self.sub_agents.append(agent)
async def initialize(self) -> None:
"""Initialize all sub-agents."""
await super().initialize()
for agent in self.sub_agents:
await agent.initialize()
async def shutdown(self) -> None:
"""Shutdown all sub-agents."""
for agent in self.sub_agents:
await agent.shutdown()
await super().shutdown()
class ParallelAgent(CompositeAgent):
"""
Execute multiple agents in parallel and aggregate results.
"""
async def _process_impl(self, context: AgentContext) -> AgentResult:
"""Execute all sub-agents in parallel."""
if not self.sub_agents:
return AgentResult(
response="No sub-agents configured",
confidence=0.0,
agent_name=self.name,
)
# Run all agents concurrently
tasks = [agent.process(context=context) for agent in self.sub_agents]
results = await asyncio.gather(*tasks, return_exceptions=True)
# Aggregate results
successful_results = []
errors = []
for i, result in enumerate(results):
if isinstance(result, Exception):
errors.append(f"{self.sub_agents[i].name}: {str(result)}")
elif isinstance(result, dict) and result.get("metadata", {}).get("success", True):
successful_results.append(result)
else:
if isinstance(result, dict):
errors.append(
f"{self.sub_agents[i].name}: {result.get('metadata', {}).get('error', 'Unknown error')}"
)
if not successful_results:
return AgentResult(
response=f"All sub-agents failed: {'; '.join(errors)}",
confidence=0.0,
agent_name=self.name,
success=False,
error="All sub-agents failed",
)
# Aggregate: highest confidence wins (simple strategy)
best_result = max(successful_results, key=lambda r: r.get("metadata", {}).get("confidence", 0.0))
return AgentResult(
response=best_result["response"],
confidence=best_result.get("metadata", {}).get("confidence", 0.0),
metadata={
"aggregation_method": "highest_confidence",
"sub_agent_results": successful_results,
"errors": errors,
},
agent_name=self.name,
)
class SequentialAgent(CompositeAgent):
"""
Execute multiple agents sequentially, passing context through each.
"""
async def _process_impl(self, context: AgentContext) -> AgentResult:
"""Execute sub-agents in sequence."""
if not self.sub_agents:
return AgentResult(
response="No sub-agents configured",
confidence=0.0,
agent_name=self.name,
)
current_context = context
intermediate_results = []
for agent in self.sub_agents:
result = await agent.process(context=current_context)
intermediate_results.append(
{
"agent": agent.name,
"result": result,
}
)
# Check for failure
if not result.get("metadata", {}).get("success", True):
return AgentResult(
response=result["response"],
confidence=result.get("metadata", {}).get("confidence", 0.0),
metadata={
"failed_at": agent.name,
"intermediate_results": intermediate_results,
},
agent_name=self.name,
success=False,
error=result.get("metadata", {}).get("error"),
)
# Update context for next agent
current_context = AgentContext(
query=current_context.query,
session_id=current_context.session_id,
rag_context=result["response"], # Previous output becomes context
metadata={
**current_context.metadata,
f"{agent.name}_result": result["response"],
},
additional_context=current_context.additional_context,
)
# Final result from last agent
final_result = intermediate_results[-1]["result"]
return AgentResult(
response=final_result["response"],
confidence=final_result.get("metadata", {}).get("confidence", 0.0),
metadata={
"pipeline": [r["agent"] for r in intermediate_results],
"intermediate_results": intermediate_results,
},
agent_name=self.name,
)
|