Spaces:
Running
Running
File size: 31,646 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 |
"""
LangGraph Integration Module - Extract graph building with new MCTS core integration.
Provides:
- Graph building extracted from LangGraphMultiAgentFramework
- Integration with new deterministic MCTS core
- Backward compatibility with original process() signature
- Support for parallel HRM/TRM execution
"""
from __future__ import annotations
import asyncio
import operator
import time
from typing import Annotated, Any, NotRequired, TypedDict
# LangGraph imports (these would be installed dependencies)
try:
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import END, StateGraph
except ImportError:
# Stubs for development without LangGraph installed
StateGraph = None
END = "END"
MemorySaver = None
# Import new MCTS modules
from .mcts.config import ConfigPreset, MCTSConfig, create_preset_config
from .mcts.core import MCTSEngine, MCTSNode, MCTSState
from .mcts.experiments import ExperimentTracker
from .mcts.policies import (
HybridRolloutPolicy,
)
# Neural Meta-Controller imports (optional)
try:
from src.agents.meta_controller.base import (
AbstractMetaController,
MetaControllerFeatures,
)
from src.agents.meta_controller.bert_controller import BERTMetaController
from src.agents.meta_controller.config_loader import (
MetaControllerConfig,
MetaControllerConfigLoader,
)
from src.agents.meta_controller.rnn_controller import RNNMetaController
_META_CONTROLLER_AVAILABLE = True
except ImportError:
_META_CONTROLLER_AVAILABLE = False
AbstractMetaController = None # type: ignore
MetaControllerFeatures = None # type: ignore
RNNMetaController = None # type: ignore
BERTMetaController = None # type: ignore
MetaControllerConfig = None # type: ignore
MetaControllerConfigLoader = None # type: ignore
class AgentState(TypedDict):
"""Shared state for LangGraph agent framework."""
# Input
query: str
use_mcts: bool
use_rag: bool
# RAG context
rag_context: NotRequired[str]
retrieved_docs: NotRequired[list[dict]]
# Agent results
hrm_results: NotRequired[dict]
trm_results: NotRequired[dict]
agent_outputs: Annotated[list[dict], operator.add]
# MCTS simulation (updated for new core)
mcts_root: NotRequired[Any] # MCTSNode
mcts_iterations: NotRequired[int]
mcts_best_action: NotRequired[str]
mcts_stats: NotRequired[dict]
mcts_config: NotRequired[dict]
# Evaluation
confidence_scores: NotRequired[dict[str, float]]
consensus_reached: NotRequired[bool]
consensus_score: NotRequired[float]
# Control flow
iteration: int
max_iterations: int
# Neural Meta-Controller (optional)
routing_history: NotRequired[list[dict]]
meta_controller_predictions: NotRequired[list[dict]]
last_routed_agent: NotRequired[str]
# Output
final_response: NotRequired[str]
metadata: NotRequired[dict]
class GraphBuilder:
"""
Builds and configures the LangGraph state machine for multi-agent orchestration.
Extracts graph building logic from LangGraphMultiAgentFramework for modularity.
"""
def __init__(
self,
hrm_agent,
trm_agent,
model_adapter,
logger,
vector_store=None,
mcts_config: MCTSConfig | None = None,
top_k_retrieval: int = 5,
max_iterations: int = 3,
consensus_threshold: float = 0.75,
enable_parallel_agents: bool = True,
meta_controller_config: Any | None = None,
):
"""
Initialize graph builder.
Args:
hrm_agent: HRM agent instance
trm_agent: TRM agent instance
model_adapter: Model adapter for LLM calls
logger: Logger instance
vector_store: Optional vector store for RAG
mcts_config: MCTS configuration (uses balanced preset if None)
top_k_retrieval: Number of documents for RAG
max_iterations: Maximum agent iterations
consensus_threshold: Threshold for consensus
enable_parallel_agents: Run HRM/TRM in parallel
meta_controller_config: Optional neural meta-controller configuration
"""
self.hrm_agent = hrm_agent
self.trm_agent = trm_agent
self.model_adapter = model_adapter
self.logger = logger
self.vector_store = vector_store
self.top_k_retrieval = top_k_retrieval
self.max_iterations = max_iterations
self.consensus_threshold = consensus_threshold
self.enable_parallel_agents = enable_parallel_agents
# MCTS configuration
self.mcts_config = mcts_config or create_preset_config(ConfigPreset.BALANCED)
# MCTS engine with deterministic behavior
self.mcts_engine = MCTSEngine(
seed=self.mcts_config.seed,
exploration_weight=self.mcts_config.exploration_weight,
progressive_widening_k=self.mcts_config.progressive_widening_k,
progressive_widening_alpha=self.mcts_config.progressive_widening_alpha,
max_parallel_rollouts=self.mcts_config.max_parallel_rollouts,
cache_size_limit=self.mcts_config.cache_size_limit,
)
# Experiment tracking
self.experiment_tracker = ExperimentTracker(name="langgraph_mcts")
# Neural Meta-Controller (optional)
self.meta_controller: Any | None = None
self.meta_controller_config = meta_controller_config
self.use_neural_routing = False
if meta_controller_config is not None:
self._init_meta_controller(meta_controller_config)
def build_graph(self) -> StateGraph:
"""
Build LangGraph state machine.
Returns:
Configured StateGraph
"""
if StateGraph is None:
raise ImportError("LangGraph not installed. Install with: pip install langgraph")
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("entry", self._entry_node)
workflow.add_node("retrieve_context", self._retrieve_context_node)
workflow.add_node("route_decision", self._route_decision_node)
workflow.add_node("parallel_agents", self._parallel_agents_node)
workflow.add_node("hrm_agent", self._hrm_agent_node)
workflow.add_node("trm_agent", self._trm_agent_node)
workflow.add_node("mcts_simulator", self._mcts_simulator_node)
workflow.add_node("aggregate_results", self._aggregate_results_node)
workflow.add_node("evaluate_consensus", self._evaluate_consensus_node)
workflow.add_node("synthesize", self._synthesize_node)
# Define edges
workflow.set_entry_point("entry")
workflow.add_edge("entry", "retrieve_context")
workflow.add_edge("retrieve_context", "route_decision")
# Conditional routing
workflow.add_conditional_edges(
"route_decision",
self._route_to_agents,
{
"parallel": "parallel_agents",
"hrm": "hrm_agent",
"trm": "trm_agent",
"mcts": "mcts_simulator",
"aggregate": "aggregate_results",
},
)
# Parallel agents to aggregation
workflow.add_edge("parallel_agents", "aggregate_results")
# Sequential agent nodes
workflow.add_edge("hrm_agent", "aggregate_results")
workflow.add_edge("trm_agent", "aggregate_results")
workflow.add_edge("mcts_simulator", "aggregate_results")
# Aggregation to evaluation
workflow.add_edge("aggregate_results", "evaluate_consensus")
# Conditional consensus check
workflow.add_conditional_edges(
"evaluate_consensus",
self._check_consensus,
{
"synthesize": "synthesize",
"iterate": "route_decision",
},
)
# Synthesis to end
workflow.add_edge("synthesize", END)
return workflow
def _entry_node(self, state: AgentState) -> dict:
"""Initialize state and parse query."""
self.logger.info(f"Entry node: {state['query'][:100]}")
return {
"iteration": 0,
"agent_outputs": [],
"mcts_config": self.mcts_config.to_dict(),
}
def _retrieve_context_node(self, state: AgentState) -> dict:
"""Retrieve context from vector store using RAG."""
if not state.get("use_rag", True) or not self.vector_store:
return {"rag_context": ""}
query = state["query"]
# Retrieve documents
docs = self.vector_store.similarity_search(query, k=self.top_k_retrieval)
# Format context
context = "\n\n".join([doc.page_content for doc in docs])
self.logger.info(f"Retrieved {len(docs)} documents")
return {
"rag_context": context,
"retrieved_docs": [{"content": doc.page_content, "metadata": doc.metadata} for doc in docs],
}
def _route_decision_node(self, _state: AgentState) -> dict:
"""Prepare routing decision."""
return {}
def _init_meta_controller(self, config: Any) -> None:
"""
Initialize the neural meta-controller based on configuration.
Args:
config: MetaControllerConfig or dict with configuration
"""
if not _META_CONTROLLER_AVAILABLE:
self.logger.warning("Meta-controller modules not available. Falling back to rule-based routing.")
return
try:
# Handle both config object and dict
mc_config = MetaControllerConfigLoader.load_from_dict(config) if isinstance(config, dict) else config
if not mc_config.enabled:
self.logger.info("Neural meta-controller disabled in config")
return
# Initialize based on type
if mc_config.type == "rnn":
self.meta_controller = RNNMetaController(
name="GraphBuilder_RNN",
seed=mc_config.inference.seed,
hidden_dim=mc_config.rnn.hidden_dim,
num_layers=mc_config.rnn.num_layers,
dropout=mc_config.rnn.dropout,
device=mc_config.inference.device,
)
# Load trained model if path specified
if mc_config.rnn.model_path:
self.meta_controller.load_model(mc_config.rnn.model_path)
self.logger.info(f"Loaded RNN model from {mc_config.rnn.model_path}")
elif mc_config.type == "bert":
self.meta_controller = BERTMetaController(
name="GraphBuilder_BERT",
seed=mc_config.inference.seed,
model_name=mc_config.bert.model_name,
lora_r=mc_config.bert.lora_r,
lora_alpha=mc_config.bert.lora_alpha,
lora_dropout=mc_config.bert.lora_dropout,
device=mc_config.inference.device,
use_lora=mc_config.bert.use_lora,
)
# Load trained model if path specified
if mc_config.bert.model_path:
self.meta_controller.load_model(mc_config.bert.model_path)
self.logger.info(f"Loaded BERT model from {mc_config.bert.model_path}")
else:
raise ValueError(f"Unknown meta-controller type: {mc_config.type}")
self.use_neural_routing = True
self.logger.info(f"Initialized {mc_config.type.upper()} neural meta-controller")
except Exception as e:
self.logger.error(f"Failed to initialize meta-controller: {e}")
if hasattr(config, "fallback_to_rule_based") and config.fallback_to_rule_based:
self.logger.warning("Falling back to rule-based routing")
else:
raise
def _extract_meta_controller_features(self, state: AgentState) -> Any:
"""
Extract features from AgentState for meta-controller prediction.
Args:
state: Current agent state
Returns:
MetaControllerFeatures instance
"""
if not _META_CONTROLLER_AVAILABLE or MetaControllerFeatures is None:
return None
# Extract HRM confidence
hrm_conf = 0.0
if "hrm_results" in state:
hrm_conf = state["hrm_results"].get("metadata", {}).get("decomposition_quality_score", 0.5)
# Extract TRM confidence
trm_conf = 0.0
if "trm_results" in state:
trm_conf = state["trm_results"].get("metadata", {}).get("final_quality_score", 0.5)
# Extract MCTS value
mcts_val = 0.0
if "mcts_stats" in state:
mcts_val = state["mcts_stats"].get("best_action_value", 0.5)
# Consensus score
consensus = state.get("consensus_score", 0.0)
# Last agent used
last_agent = state.get("last_routed_agent", "none")
# Iteration
iteration = state.get("iteration", 0)
# Query length
query_length = len(state.get("query", ""))
# Has RAG context
has_rag = bool(state.get("rag_context", ""))
return MetaControllerFeatures(
hrm_confidence=hrm_conf,
trm_confidence=trm_conf,
mcts_value=mcts_val,
consensus_score=consensus,
last_agent=last_agent,
iteration=iteration,
query_length=query_length,
has_rag_context=has_rag,
)
def _neural_route_decision(self, state: AgentState) -> str:
"""
Make routing decision using neural meta-controller.
Args:
state: Current agent state
Returns:
Route decision string ("parallel", "hrm", "trm", "mcts", "aggregate")
"""
try:
features = self._extract_meta_controller_features(state)
if features is None:
return self._rule_based_route_decision(state)
prediction = self.meta_controller.predict(features)
# Log prediction for debugging
self.logger.debug(
f"Neural routing: agent={prediction.agent}, "
f"confidence={prediction.confidence:.3f}, "
f"probs={prediction.probabilities}"
)
# Map agent prediction to route
agent = prediction.agent
# Handle routing based on predicted agent
state.get("iteration", 0)
if agent == "hrm":
if "hrm_results" not in state:
return "hrm"
elif agent == "trm":
if "trm_results" not in state:
return "trm"
elif agent == "mcts" and state.get("use_mcts", False) and "mcts_stats" not in state:
return "mcts"
# If predicted agent already ran or not applicable, use rule-based
return self._rule_based_route_decision(state)
except Exception as e:
self.logger.error(f"Neural routing failed: {e}")
# Fallback to rule-based routing
return self._rule_based_route_decision(state)
def _rule_based_route_decision(self, state: AgentState) -> str:
"""
Make routing decision using rule-based logic.
Args:
state: Current agent state
Returns:
Route decision string
"""
iteration = state.get("iteration", 0)
# First iteration: run HRM and TRM
if iteration == 0:
if self.enable_parallel_agents:
if "hrm_results" not in state and "trm_results" not in state:
return "parallel"
else:
if "hrm_results" not in state:
return "hrm"
elif "trm_results" not in state:
return "trm"
# Run MCTS if enabled and not yet done
if state.get("use_mcts", False) and "mcts_stats" not in state:
return "mcts"
return "aggregate"
def _route_to_agents(self, state: AgentState) -> str:
"""Route to appropriate agent based on state."""
# Use neural routing if enabled
if self.use_neural_routing and self.meta_controller is not None:
return self._neural_route_decision(state)
# Fall back to rule-based routing
return self._rule_based_route_decision(state)
async def _parallel_agents_node(self, state: AgentState) -> dict:
"""Execute HRM and TRM agents in parallel."""
self.logger.info("Executing HRM and TRM agents in parallel")
# Run both agents concurrently
hrm_task = asyncio.create_task(
self.hrm_agent.process(
query=state["query"],
rag_context=state.get("rag_context"),
)
)
trm_task = asyncio.create_task(
self.trm_agent.process(
query=state["query"],
rag_context=state.get("rag_context"),
)
)
# Await both results
hrm_result, trm_result = await asyncio.gather(hrm_task, trm_task)
# Combine outputs
return {
"hrm_results": {
"response": hrm_result["response"],
"metadata": hrm_result["metadata"],
},
"trm_results": {
"response": trm_result["response"],
"metadata": trm_result["metadata"],
},
"agent_outputs": [
{
"agent": "hrm",
"response": hrm_result["response"],
"confidence": hrm_result["metadata"].get("decomposition_quality_score", 0.7),
},
{
"agent": "trm",
"response": trm_result["response"],
"confidence": trm_result["metadata"].get("final_quality_score", 0.7),
},
],
}
async def _hrm_agent_node(self, state: AgentState) -> dict:
"""Execute HRM agent."""
self.logger.info("Executing HRM agent")
result = await self.hrm_agent.process(
query=state["query"],
rag_context=state.get("rag_context"),
)
return {
"hrm_results": {
"response": result["response"],
"metadata": result["metadata"],
},
"agent_outputs": [
{
"agent": "hrm",
"response": result["response"],
"confidence": result["metadata"].get("decomposition_quality_score", 0.7),
}
],
}
async def _trm_agent_node(self, state: AgentState) -> dict:
"""Execute TRM agent."""
self.logger.info("Executing TRM agent")
result = await self.trm_agent.process(
query=state["query"],
rag_context=state.get("rag_context"),
)
return {
"trm_results": {
"response": result["response"],
"metadata": result["metadata"],
},
"agent_outputs": [
{
"agent": "trm",
"response": result["response"],
"confidence": result["metadata"].get("final_quality_score", 0.7),
}
],
}
async def _mcts_simulator_node(self, state: AgentState) -> dict:
"""Execute MCTS simulation using new deterministic engine."""
self.logger.info("Executing MCTS simulation with deterministic engine")
start_time = time.perf_counter()
# Reset engine for this simulation
self.mcts_engine.clear_cache()
# Create root state
root_state = MCTSState(
state_id="root",
features={
"query": state["query"][:100], # Truncate for hashing
"has_hrm": "hrm_results" in state,
"has_trm": "trm_results" in state,
},
)
root = MCTSNode(
state=root_state,
rng=self.mcts_engine.rng,
)
# Define action generator based on domain
def action_generator(mcts_state: MCTSState) -> list[str]:
"""Generate available actions for state."""
depth = len(mcts_state.state_id.split("_")) - 1
if depth == 0:
# Root level actions
return ["action_A", "action_B", "action_C", "action_D"]
elif depth < self.mcts_config.max_tree_depth:
# Subsequent actions
return ["continue", "refine", "fallback", "escalate"]
else:
return [] # Terminal
# Define state transition
def state_transition(mcts_state: MCTSState, action: str) -> MCTSState:
"""Compute next state from action."""
new_id = f"{mcts_state.state_id}_{action}"
new_features = mcts_state.features.copy()
new_features["last_action"] = action
new_features["depth"] = len(new_id.split("_")) - 1
return MCTSState(state_id=new_id, features=new_features)
# Create rollout policy using agent results
def heuristic_fn(mcts_state: MCTSState) -> float:
"""Evaluate state using agent confidence."""
base = 0.5
# Bias based on agent confidence
if state.get("hrm_results"):
hrm_conf = state["hrm_results"]["metadata"].get("decomposition_quality_score", 0.5)
base += hrm_conf * 0.2
if state.get("trm_results"):
trm_conf = state["trm_results"]["metadata"].get("final_quality_score", 0.5)
base += trm_conf * 0.2
return min(base, 1.0)
rollout_policy = HybridRolloutPolicy(
heuristic_fn=heuristic_fn,
heuristic_weight=0.7,
random_weight=0.3,
)
# Run MCTS search
best_action, stats = await self.mcts_engine.search(
root=root,
num_iterations=self.mcts_config.num_iterations,
action_generator=action_generator,
state_transition=state_transition,
rollout_policy=rollout_policy,
max_rollout_depth=self.mcts_config.max_rollout_depth,
selection_policy=self.mcts_config.selection_policy,
)
end_time = time.perf_counter()
execution_time_ms = (end_time - start_time) * 1000
# Compute tree statistics
tree_depth = self.mcts_engine.get_tree_depth(root)
tree_node_count = self.mcts_engine.count_nodes(root)
# Track experiment
self.experiment_tracker.create_result(
experiment_id=f"mcts_{int(time.time())}",
config=self.mcts_config,
mcts_stats=stats,
execution_time_ms=execution_time_ms,
tree_depth=tree_depth,
tree_node_count=tree_node_count,
metadata={
"query": state["query"][:100],
"has_rag": state.get("use_rag", False),
},
)
self.logger.info(
f"MCTS complete: best_action={best_action}, "
f"iterations={stats['iterations']}, "
f"cache_hit_rate={stats['cache_hit_rate']:.2%}"
)
return {
"mcts_root": root,
"mcts_best_action": best_action,
"mcts_stats": stats,
"agent_outputs": [
{
"agent": "mcts",
"response": (
f"Simulated {stats['iterations']} scenarios with "
f"seed {self.mcts_config.seed}. "
f"Recommended action: {best_action} "
f"(visits={stats['best_action_visits']}, "
f"value={stats['best_action_value']:.3f})"
),
"confidence": min(
stats["best_action_visits"] / stats["iterations"] if stats["iterations"] > 0 else 0.5,
1.0,
),
}
],
}
def _aggregate_results_node(self, state: AgentState) -> dict:
"""Aggregate results from all agents."""
self.logger.info("Aggregating agent results")
agent_outputs = state.get("agent_outputs", [])
confidence_scores = {output["agent"]: output["confidence"] for output in agent_outputs}
return {"confidence_scores": confidence_scores}
def _evaluate_consensus_node(self, state: AgentState) -> dict:
"""Evaluate consensus among agents."""
agent_outputs = state.get("agent_outputs", [])
if len(agent_outputs) < 2:
return {
"consensus_reached": True,
"consensus_score": 1.0,
}
avg_confidence = sum(o["confidence"] for o in agent_outputs) / len(agent_outputs)
consensus_reached = avg_confidence >= self.consensus_threshold
self.logger.info(f"Consensus: {consensus_reached} (score={avg_confidence:.2f})")
return {
"consensus_reached": consensus_reached,
"consensus_score": avg_confidence,
}
def _check_consensus(self, state: AgentState) -> str:
"""Check if consensus reached or need more iterations."""
if state.get("consensus_reached", False):
return "synthesize"
if state.get("iteration", 0) >= state.get("max_iterations", self.max_iterations):
return "synthesize"
return "iterate"
async def _synthesize_node(self, state: AgentState) -> dict:
"""Synthesize final response from agent outputs."""
self.logger.info("Synthesizing final response")
agent_outputs = state.get("agent_outputs", [])
synthesis_prompt = f"""Query: {state["query"]}
Agent Outputs:
"""
for output in agent_outputs:
synthesis_prompt += f"""
{output["agent"].upper()} (confidence={output["confidence"]:.2f}):
{output["response"]}
"""
synthesis_prompt += """
Synthesize these outputs into a comprehensive final response.
Prioritize higher-confidence outputs. Integrate insights from all agents.
Final Response:"""
try:
response = await self.model_adapter.generate(
prompt=synthesis_prompt,
temperature=0.5,
)
final_response = response.text
except Exception as e:
self.logger.error(f"Synthesis failed: {e}")
best_output = max(agent_outputs, key=lambda o: o["confidence"])
final_response = best_output["response"]
metadata = {
"agents_used": [o["agent"] for o in agent_outputs],
"confidence_scores": state.get("confidence_scores", {}),
"consensus_score": state.get("consensus_score", 0.0),
"iterations": state.get("iteration", 0),
"mcts_config": state.get("mcts_config", {}),
}
if state.get("mcts_stats"):
metadata["mcts_stats"] = state["mcts_stats"]
return {
"final_response": final_response,
"metadata": metadata,
}
class IntegratedFramework:
"""
Integrated multi-agent framework with new MCTS core.
Maintains backward compatibility with original process() signature.
"""
def __init__(
self,
model_adapter,
logger,
vector_store=None,
_embedding_model=None,
hrm_config: dict | None = None,
trm_config: dict | None = None,
mcts_config: MCTSConfig | None = None,
top_k_retrieval: int = 5,
max_iterations: int = 3,
consensus_threshold: float = 0.75,
enable_parallel_agents: bool = True,
):
"""
Initialize integrated framework.
Backward compatible with LangGraphMultiAgentFramework.
"""
self.model_adapter = model_adapter
self.logger = logger
self.vector_store = vector_store
# Import agents (would be real imports in production)
try:
from improved_hrm_agent import HRMAgent
from improved_trm_agent import TRMAgent
self.hrm_agent = HRMAgent(
model_adapter=model_adapter,
logger=logger,
**(hrm_config or {}),
)
self.trm_agent = TRMAgent(
model_adapter=model_adapter,
logger=logger,
**(trm_config or {}),
)
except ImportError:
self.hrm_agent = None
self.trm_agent = None
self.logger.warning("Could not import HRM/TRM agents")
# Build graph
self.graph_builder = GraphBuilder(
hrm_agent=self.hrm_agent,
trm_agent=self.trm_agent,
model_adapter=model_adapter,
logger=logger,
vector_store=vector_store,
mcts_config=mcts_config,
top_k_retrieval=top_k_retrieval,
max_iterations=max_iterations,
consensus_threshold=consensus_threshold,
enable_parallel_agents=enable_parallel_agents,
)
# Compile graph
if StateGraph is not None:
self.graph = self.graph_builder.build_graph()
self.memory = MemorySaver() if MemorySaver else None
self.app = self.graph.compile(checkpointer=self.memory) if self.memory else self.graph.compile()
else:
self.graph = None
self.app = None
self.logger.info("Integrated framework initialized with new MCTS core")
async def process(
self,
query: str,
use_rag: bool = True,
use_mcts: bool = False,
config: dict | None = None,
) -> dict:
"""
Process query through LangGraph.
Backward compatible with original signature.
Args:
query: User query to process
use_rag: Enable RAG context retrieval
use_mcts: Enable MCTS simulation
config: Optional LangGraph config
Returns:
Dictionary with response, metadata, and state
"""
if self.app is None:
raise RuntimeError("LangGraph not available. Install with: pip install langgraph")
initial_state = {
"query": query,
"use_rag": use_rag,
"use_mcts": use_mcts,
"iteration": 0,
"max_iterations": self.graph_builder.max_iterations,
"agent_outputs": [],
}
config = config or {"configurable": {"thread_id": "default"}}
result = await self.app.ainvoke(initial_state, config=config)
return {
"response": result.get("final_response", ""),
"metadata": result.get("metadata", {}),
"state": result,
}
def get_experiment_tracker(self) -> ExperimentTracker:
"""Get the experiment tracker for analysis."""
return self.graph_builder.experiment_tracker
def set_mcts_seed(self, seed: int) -> None:
"""Set MCTS seed for deterministic behavior."""
self.graph_builder.mcts_engine.reset_seed(seed)
self.graph_builder.mcts_config.seed = seed
|