File size: 11,416 Bytes
40ee6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
"""
MCTS Configuration Module - Parameter management and presets.

Provides:
- MCTSConfig dataclass with all parameters
- Validation of parameter bounds
- Preset configurations (fast, balanced, thorough)
- Serialization support for experiment tracking
"""

from __future__ import annotations

import json
from dataclasses import asdict, dataclass
from enum import Enum
from typing import Any

from .policies import SelectionPolicy


class ConfigPreset(Enum):
    """Preset configuration names."""

    FAST = "fast"
    BALANCED = "balanced"
    THOROUGH = "thorough"
    EXPLORATION_HEAVY = "exploration_heavy"
    EXPLOITATION_HEAVY = "exploitation_heavy"


@dataclass
class MCTSConfig:
    """
    Complete configuration for MCTS engine.

    All MCTS parameters are centralized here with validation.
    Supports serialization for experiment tracking and reproducibility.
    """

    # Core MCTS parameters
    num_iterations: int = 100
    """Number of MCTS iterations to run."""

    seed: int = 42
    """Random seed for deterministic behavior."""

    exploration_weight: float = 1.414
    """UCB1 exploration constant (c). Higher = more exploration."""

    # Progressive widening
    progressive_widening_k: float = 1.0
    """Progressive widening coefficient. Higher = more conservative."""

    progressive_widening_alpha: float = 0.5
    """Progressive widening exponent. Lower = more aggressive expansion."""

    # Rollout configuration
    max_rollout_depth: int = 10
    """Maximum depth for rollout simulations."""

    rollout_policy: str = "hybrid"
    """Rollout policy: 'random', 'greedy', 'hybrid'."""

    # Action selection
    selection_policy: SelectionPolicy = SelectionPolicy.MAX_VISITS
    """Policy for final action selection."""

    # Parallelization
    max_parallel_rollouts: int = 4
    """Maximum concurrent rollout simulations."""

    # Caching
    enable_cache: bool = True
    """Enable simulation result caching."""

    cache_size_limit: int = 10000
    """Maximum number of cached simulation results."""

    # Tree structure
    max_tree_depth: int = 20
    """Maximum depth of MCTS tree."""

    max_children_per_node: int = 50
    """Maximum children per node (action branching limit)."""

    # Early termination
    early_termination_threshold: float = 0.95
    """Stop if best action has this fraction of total visits."""

    min_iterations_before_termination: int = 50
    """Minimum iterations before early termination check."""

    # Value bounds
    min_value: float = 0.0
    """Minimum value for normalization."""

    max_value: float = 1.0
    """Maximum value for normalization."""

    # Metadata
    name: str = "default"
    """Configuration name for tracking."""

    description: str = ""
    """Description of this configuration."""

    def __post_init__(self):
        """Validate configuration parameters after initialization."""
        self.validate()

    def validate(self) -> None:
        """
        Validate all configuration parameters.

        Raises:
            ValueError: If any parameter is out of valid bounds.
        """
        errors = []

        # Core parameters
        if self.num_iterations < 1:
            errors.append("num_iterations must be >= 1")
        if self.num_iterations > 100000:
            errors.append("num_iterations should be <= 100000 for practical use")

        if self.exploration_weight < 0:
            errors.append("exploration_weight must be >= 0")
        if self.exploration_weight > 10:
            errors.append("exploration_weight should be <= 10")

        # Progressive widening
        if self.progressive_widening_k <= 0:
            errors.append("progressive_widening_k must be > 0")
        if not 0 < self.progressive_widening_alpha < 1:
            errors.append("progressive_widening_alpha must be in (0, 1)")

        # Rollout
        if self.max_rollout_depth < 1:
            errors.append("max_rollout_depth must be >= 1")
        if self.rollout_policy not in ["random", "greedy", "hybrid", "llm"]:
            errors.append("rollout_policy must be one of: random, greedy, hybrid, llm")

        # Parallelization
        if self.max_parallel_rollouts < 1:
            errors.append("max_parallel_rollouts must be >= 1")
        if self.max_parallel_rollouts > 100:
            errors.append("max_parallel_rollouts should be <= 100")

        # Caching
        if self.cache_size_limit < 0:
            errors.append("cache_size_limit must be >= 0")

        # Tree structure
        if self.max_tree_depth < 1:
            errors.append("max_tree_depth must be >= 1")
        if self.max_children_per_node < 1:
            errors.append("max_children_per_node must be >= 1")

        # Early termination
        if not 0 < self.early_termination_threshold <= 1:
            errors.append("early_termination_threshold must be in (0, 1]")
        if self.min_iterations_before_termination < 1:
            errors.append("min_iterations_before_termination must be >= 1")
        if self.min_iterations_before_termination > self.num_iterations:
            errors.append("min_iterations_before_termination must be <= num_iterations")

        # Value bounds
        if self.min_value >= self.max_value:
            errors.append("min_value must be < max_value")

        if errors:
            raise ValueError("Invalid MCTS configuration:\n" + "\n".join(f"  - {e}" for e in errors))

    def to_dict(self) -> dict[str, Any]:
        """
        Convert configuration to dictionary for serialization.

        Returns:
            Dictionary representation of config.
        """
        d = asdict(self)
        # Convert enum to string
        d["selection_policy"] = self.selection_policy.value
        return d

    def to_json(self, indent: int = 2) -> str:
        """
        Serialize configuration to JSON string.

        Args:
            indent: JSON indentation level

        Returns:
            JSON string representation
        """
        return json.dumps(self.to_dict(), indent=indent)

    @classmethod
    def from_dict(cls, data: dict[str, Any]) -> MCTSConfig:
        """
        Create configuration from dictionary.

        Args:
            data: Dictionary with configuration parameters

        Returns:
            MCTSConfig instance
        """
        # Convert selection_policy string back to enum
        if "selection_policy" in data and isinstance(data["selection_policy"], str):
            data["selection_policy"] = SelectionPolicy(data["selection_policy"])
        return cls(**data)

    @classmethod
    def from_json(cls, json_str: str) -> MCTSConfig:
        """
        Deserialize configuration from JSON string.

        Args:
            json_str: JSON string

        Returns:
            MCTSConfig instance
        """
        data = json.loads(json_str)
        return cls.from_dict(data)

    def copy(self, **overrides) -> MCTSConfig:
        """
        Create a copy with optional parameter overrides.

        Args:
            **overrides: Parameters to override

        Returns:
            New MCTSConfig instance
        """
        data = self.to_dict()
        data.update(overrides)
        return self.from_dict(data)

    def __repr__(self) -> str:
        return (
            f"MCTSConfig(name={self.name!r}, "
            f"iterations={self.num_iterations}, "
            f"c={self.exploration_weight}, "
            f"widening_k={self.progressive_widening_k}, "
            f"widening_alpha={self.progressive_widening_alpha})"
        )


def create_preset_config(preset: ConfigPreset) -> MCTSConfig:
    """
    Create a preset configuration.

    Args:
        preset: Preset type to create

    Returns:
        MCTSConfig with preset parameters
    """
    if preset == ConfigPreset.FAST:
        return MCTSConfig(
            name="fast",
            description="Fast search with minimal iterations",
            num_iterations=25,
            exploration_weight=1.414,
            progressive_widening_k=0.5,  # Aggressive widening
            progressive_widening_alpha=0.5,
            max_rollout_depth=5,
            rollout_policy="random",
            selection_policy=SelectionPolicy.MAX_VISITS,
            max_parallel_rollouts=8,
            cache_size_limit=1000,
            early_termination_threshold=0.8,
            min_iterations_before_termination=10,
        )

    elif preset == ConfigPreset.BALANCED:
        return MCTSConfig(
            name="balanced",
            description="Balanced search for typical use cases",
            num_iterations=100,
            exploration_weight=1.414,
            progressive_widening_k=1.0,
            progressive_widening_alpha=0.5,
            max_rollout_depth=10,
            rollout_policy="hybrid",
            selection_policy=SelectionPolicy.MAX_VISITS,
            max_parallel_rollouts=4,
            cache_size_limit=10000,
            early_termination_threshold=0.9,
            min_iterations_before_termination=50,
        )

    elif preset == ConfigPreset.THOROUGH:
        return MCTSConfig(
            name="thorough",
            description="Thorough search for high-stakes decisions",
            num_iterations=500,
            exploration_weight=1.414,
            progressive_widening_k=2.0,  # Conservative widening
            progressive_widening_alpha=0.6,
            max_rollout_depth=20,
            rollout_policy="hybrid",
            selection_policy=SelectionPolicy.ROBUST_CHILD,
            max_parallel_rollouts=4,
            cache_size_limit=50000,
            early_termination_threshold=0.95,
            min_iterations_before_termination=200,
        )

    elif preset == ConfigPreset.EXPLORATION_HEAVY:
        return MCTSConfig(
            name="exploration_heavy",
            description="High exploration for diverse action discovery",
            num_iterations=200,
            exploration_weight=2.5,  # High exploration
            progressive_widening_k=0.8,  # More widening
            progressive_widening_alpha=0.4,  # Aggressive
            max_rollout_depth=15,
            rollout_policy="random",
            selection_policy=SelectionPolicy.MAX_VISITS,
            max_parallel_rollouts=6,
            cache_size_limit=20000,
            early_termination_threshold=0.95,
            min_iterations_before_termination=100,
        )

    elif preset == ConfigPreset.EXPLOITATION_HEAVY:
        return MCTSConfig(
            name="exploitation_heavy",
            description="High exploitation for known-good action refinement",
            num_iterations=150,
            exploration_weight=0.5,  # Low exploration
            progressive_widening_k=3.0,  # Conservative
            progressive_widening_alpha=0.7,  # Very conservative
            max_rollout_depth=10,
            rollout_policy="greedy",
            selection_policy=SelectionPolicy.MAX_VALUE,
            max_parallel_rollouts=4,
            cache_size_limit=10000,
            early_termination_threshold=0.85,
            min_iterations_before_termination=75,
        )

    else:
        raise ValueError(f"Unknown preset: {preset}")


# Default configurations for easy access
DEFAULT_CONFIG = MCTSConfig()
FAST_CONFIG = create_preset_config(ConfigPreset.FAST)
BALANCED_CONFIG = create_preset_config(ConfigPreset.BALANCED)
THOROUGH_CONFIG = create_preset_config(ConfigPreset.THOROUGH)