Spaces:
Running
Running
File size: 14,625 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
"""
Experiment Tracking Module - Track, analyze, and compare MCTS experiments.
Provides:
- Experiment run tracking (seed, params, results)
- Statistical analysis of MCTS performance
- Comparison utilities for different configurations
- Export to JSON/CSV for analysis
"""
from __future__ import annotations
import csv
import json
import statistics
from dataclasses import asdict, dataclass, field
from datetime import datetime
from pathlib import Path
from typing import Any
from .config import MCTSConfig
@dataclass
class ExperimentResult:
"""Result of a single MCTS experiment run."""
# Identification
experiment_id: str
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
# Configuration
config: dict[str, Any] | None = None
seed: int = 42
# Core results
best_action: str | None = None
best_action_value: float = 0.0
best_action_visits: int = 0
root_visits: int = 0
# Performance metrics
total_iterations: int = 0
total_simulations: int = 0
execution_time_ms: float = 0.0
# Cache statistics
cache_hits: int = 0
cache_misses: int = 0
cache_hit_rate: float = 0.0
# Tree statistics
tree_depth: int = 0
tree_node_count: int = 0
branching_factor: float = 0.0
# Action distribution
action_stats: dict[str, dict[str, Any]] = field(default_factory=dict)
# Optional metadata
metadata: dict[str, Any] = field(default_factory=dict)
def to_dict(self) -> dict[str, Any]:
"""Convert to dictionary."""
return asdict(self)
def to_json(self, indent: int = 2) -> str:
"""Serialize to JSON."""
return json.dumps(self.to_dict(), indent=indent)
@classmethod
def from_dict(cls, data: dict[str, Any]) -> ExperimentResult:
"""Create from dictionary."""
return cls(**data)
@classmethod
def from_json(cls, json_str: str) -> ExperimentResult:
"""Deserialize from JSON."""
return cls.from_dict(json.loads(json_str))
class ExperimentTracker:
"""
Track and analyze MCTS experiments.
Features:
- Store multiple experiment results
- Statistical analysis across runs
- Configuration comparison
- Export to JSON/CSV
"""
def __init__(self, name: str = "mcts_experiments"):
"""
Initialize experiment tracker.
Args:
name: Name of this experiment series
"""
self.name = name
self.results: list[ExperimentResult] = []
self.created_at = datetime.now().isoformat()
def add_result(self, result: ExperimentResult) -> None:
"""
Add an experiment result.
Args:
result: ExperimentResult to add
"""
self.results.append(result)
def create_result(
self,
experiment_id: str,
config: MCTSConfig,
mcts_stats: dict[str, Any],
execution_time_ms: float = 0.0,
tree_depth: int = 0,
tree_node_count: int = 0,
metadata: dict[str, Any] | None = None,
) -> ExperimentResult:
"""
Create and add an experiment result from MCTS statistics.
Args:
experiment_id: Unique ID for this experiment
config: MCTS configuration used
mcts_stats: Statistics dict from MCTSEngine.search()
execution_time_ms: Execution time in milliseconds
tree_depth: Depth of MCTS tree
tree_node_count: Total nodes in tree
metadata: Optional additional metadata
Returns:
Created ExperimentResult
"""
# Calculate branching factor
branching_factor = 0.0
if tree_node_count > 1 and tree_depth > 0:
branching_factor = (tree_node_count - 1) / tree_depth
result = ExperimentResult(
experiment_id=experiment_id,
config=config.to_dict(),
seed=config.seed,
best_action=mcts_stats.get("best_action"),
best_action_value=mcts_stats.get("best_action_value", 0.0),
best_action_visits=mcts_stats.get("best_action_visits", 0),
root_visits=mcts_stats.get("root_visits", 0),
total_iterations=mcts_stats.get("iterations", 0),
total_simulations=mcts_stats.get("total_simulations", 0),
execution_time_ms=execution_time_ms,
cache_hits=mcts_stats.get("cache_hits", 0),
cache_misses=mcts_stats.get("cache_misses", 0),
cache_hit_rate=mcts_stats.get("cache_hit_rate", 0.0),
tree_depth=tree_depth,
tree_node_count=tree_node_count,
branching_factor=branching_factor,
action_stats=mcts_stats.get("action_stats", {}),
metadata=metadata or {},
)
self.add_result(result)
return result
def get_summary_statistics(self) -> dict[str, Any]:
"""
Compute summary statistics across all experiments.
Returns:
Dictionary of summary statistics
"""
if not self.results:
return {"error": "No results to analyze"}
# Extract metrics
best_values = [r.best_action_value for r in self.results]
best_visits = [r.best_action_visits for r in self.results]
exec_times = [r.execution_time_ms for r in self.results]
cache_rates = [r.cache_hit_rate for r in self.results]
tree_depths = [r.tree_depth for r in self.results]
node_counts = [r.tree_node_count for r in self.results]
def compute_stats(values: list[float]) -> dict[str, float]:
"""Compute basic statistics."""
if not values:
return {}
return {
"mean": statistics.mean(values),
"std": statistics.stdev(values) if len(values) > 1 else 0.0,
"min": min(values),
"max": max(values),
"median": statistics.median(values),
}
# Best action consistency
best_actions = [r.best_action for r in self.results]
action_counts = {}
for action in best_actions:
action_counts[action] = action_counts.get(action, 0) + 1
most_common_action = max(action_counts.items(), key=lambda x: x[1])
consistency_rate = most_common_action[1] / len(best_actions)
return {
"num_experiments": len(self.results),
"best_action_value_stats": compute_stats(best_values),
"best_action_visits_stats": compute_stats(best_visits),
"execution_time_ms_stats": compute_stats(exec_times),
"cache_hit_rate_stats": compute_stats(cache_rates),
"tree_depth_stats": compute_stats(tree_depths),
"tree_node_count_stats": compute_stats(node_counts),
"action_consistency": {
"most_common_action": most_common_action[0],
"consistency_rate": consistency_rate,
"action_distribution": action_counts,
},
}
def compare_configs(
self,
config_names: list[str] | None = None,
) -> dict[str, dict[str, Any]]:
"""
Compare performance across different configurations.
Args:
config_names: Specific config names to compare (all if None)
Returns:
Dictionary mapping config names to their statistics
"""
# Group results by configuration name
grouped: dict[str, list[ExperimentResult]] = {}
for result in self.results:
if result.config is None:
continue
config_name = result.config.get("name", "unnamed")
if config_names and config_name not in config_names:
continue
if config_name not in grouped:
grouped[config_name] = []
grouped[config_name].append(result)
# Compute statistics for each group
comparison = {}
for name, results in grouped.items():
values = [r.best_action_value for r in results]
times = [r.execution_time_ms for r in results]
visits = [r.best_action_visits for r in results]
comparison[name] = {
"num_runs": len(results),
"avg_value": statistics.mean(values) if values else 0.0,
"std_value": statistics.stdev(values) if len(values) > 1 else 0.0,
"avg_time_ms": statistics.mean(times) if times else 0.0,
"avg_visits": statistics.mean(visits) if visits else 0.0,
"value_per_ms": (
statistics.mean(values) / statistics.mean(times) if times and statistics.mean(times) > 0 else 0.0
),
}
return comparison
def analyze_seed_consistency(self, seed: int) -> dict[str, Any]:
"""
Analyze consistency of results for a specific seed.
Args:
seed: Seed value to analyze
Returns:
Analysis of determinism for this seed
"""
seed_results = [r for r in self.results if r.seed == seed]
if not seed_results:
return {"error": f"No results found for seed {seed}"}
# Check if all results are identical
best_actions = [r.best_action for r in seed_results]
best_values = [r.best_action_value for r in seed_results]
best_visits = [r.best_action_visits for r in seed_results]
is_deterministic = len(set(best_actions)) == 1 and len(set(best_values)) == 1 and len(set(best_visits)) == 1
return {
"seed": seed,
"num_runs": len(seed_results),
"is_deterministic": is_deterministic,
"unique_actions": list(set(best_actions)),
"value_variance": statistics.variance(best_values) if len(best_values) > 1 else 0.0,
"visits_variance": statistics.variance(best_visits) if len(best_visits) > 1 else 0.0,
}
def export_to_json(self, file_path: str) -> None:
"""
Export all results to JSON file.
Args:
file_path: Path to output file
"""
data = {
"name": self.name,
"created_at": self.created_at,
"num_experiments": len(self.results),
"results": [r.to_dict() for r in self.results],
"summary": self.get_summary_statistics(),
}
path = Path(file_path)
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "w") as f:
json.dump(data, f, indent=2)
def export_to_csv(self, file_path: str) -> None:
"""
Export results to CSV file for spreadsheet analysis.
Args:
file_path: Path to output file
"""
if not self.results:
return
path = Path(file_path)
path.parent.mkdir(parents=True, exist_ok=True)
# Define CSV columns
fieldnames = [
"experiment_id",
"timestamp",
"seed",
"config_name",
"num_iterations",
"exploration_weight",
"best_action",
"best_action_value",
"best_action_visits",
"root_visits",
"total_simulations",
"execution_time_ms",
"cache_hit_rate",
"tree_depth",
"tree_node_count",
"branching_factor",
]
with open(path, "w", newline="") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
for result in self.results:
row = {
"experiment_id": result.experiment_id,
"timestamp": result.timestamp,
"seed": result.seed,
"config_name": (result.config.get("name", "unnamed") if result.config else "unknown"),
"num_iterations": (result.config.get("num_iterations", 0) if result.config else 0),
"exploration_weight": (result.config.get("exploration_weight", 0) if result.config else 0),
"best_action": result.best_action,
"best_action_value": result.best_action_value,
"best_action_visits": result.best_action_visits,
"root_visits": result.root_visits,
"total_simulations": result.total_simulations,
"execution_time_ms": result.execution_time_ms,
"cache_hit_rate": result.cache_hit_rate,
"tree_depth": result.tree_depth,
"tree_node_count": result.tree_node_count,
"branching_factor": result.branching_factor,
}
writer.writerow(row)
@classmethod
def load_from_json(cls, file_path: str) -> ExperimentTracker:
"""
Load experiment tracker from JSON file.
Args:
file_path: Path to JSON file
Returns:
Loaded ExperimentTracker
"""
with open(file_path) as f:
data = json.load(f)
tracker = cls(name=data.get("name", "loaded_experiments"))
tracker.created_at = data.get("created_at", tracker.created_at)
for result_data in data.get("results", []):
tracker.results.append(ExperimentResult.from_dict(result_data))
return tracker
def clear(self) -> None:
"""Clear all results."""
self.results.clear()
def __len__(self) -> int:
return len(self.results)
def __repr__(self) -> str:
return f"ExperimentTracker(name={self.name!r}, num_results={len(self.results)})"
def run_determinism_test(
engine_factory,
config: MCTSConfig,
num_runs: int = 3,
) -> tuple[bool, dict[str, Any]]:
"""
Test that MCTS produces deterministic results with same seed.
Args:
engine_factory: Factory function to create MCTSEngine
config: Configuration to test
num_runs: Number of runs to compare
Returns:
Tuple of (is_deterministic, analysis_dict)
"""
ExperimentTracker(name="determinism_test")
# This is a stub - actual implementation would run the engine
# Results would be compared to verify determinism
analysis = {
"config": config.to_dict(),
"num_runs": num_runs,
"is_deterministic": True, # Would be computed from actual runs
"message": "Determinism test requires actual engine execution",
}
return True, analysis
|