File size: 18,833 Bytes
40ee6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
"""
Performance profiling infrastructure for multi-agent MCTS framework.

Provides:
- Context manager for timing code blocks
- Memory profiling hooks
- Async-aware profiling
- Report generation
"""

import asyncio
import functools
import time
from collections import defaultdict
from contextlib import asynccontextmanager, contextmanager
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Optional

import psutil

from .logging import get_logger


@dataclass
class TimingResult:
    """Result of a timed operation."""

    name: str
    elapsed_ms: float
    start_time: float
    end_time: float
    memory_start_mb: float
    memory_end_mb: float
    memory_delta_mb: float
    success: bool = True
    error: str | None = None
    metadata: dict[str, Any] = field(default_factory=dict)


@dataclass
class ProfilingSession:
    """Container for profiling results within a session."""

    session_id: str
    start_time: datetime = field(default_factory=datetime.utcnow)
    timings: list[TimingResult] = field(default_factory=list)
    memory_samples: list[dict[str, float]] = field(default_factory=list)
    cpu_samples: list[float] = field(default_factory=list)
    markers: list[dict[str, Any]] = field(default_factory=list)


class AsyncProfiler:
    """
    Async-aware profiler for multi-agent MCTS framework.

    Tracks:
    - Execution times for async operations
    - Memory usage patterns
    - CPU utilization
    - Custom markers and events
    """

    _instance: Optional["AsyncProfiler"] = None

    def __init__(self):
        self.logger = get_logger("observability.profiling")
        self._sessions: dict[str, ProfilingSession] = {}
        self._current_session: str | None = None
        self._process = psutil.Process()
        self._aggregate_timings: dict[str, list[float]] = defaultdict(list)

    @classmethod
    def get_instance(cls) -> "AsyncProfiler":
        """Get singleton instance of AsyncProfiler."""
        if cls._instance is None:
            cls._instance = cls()
        return cls._instance

    def start_session(self, session_id: str | None = None) -> str:
        """Start a new profiling session."""
        if session_id is None:
            session_id = f"session_{datetime.utcnow().strftime('%Y%m%d_%H%M%S_%f')}"

        self._sessions[session_id] = ProfilingSession(session_id=session_id)
        self._current_session = session_id
        self.logger.info(f"Started profiling session: {session_id}")
        return session_id

    def end_session(self, session_id: str | None = None) -> ProfilingSession:
        """End a profiling session and return results."""
        if session_id is None:
            session_id = self._current_session

        if session_id not in self._sessions:
            raise ValueError(f"Unknown session: {session_id}")

        session = self._sessions[session_id]
        self.logger.info(f"Ended profiling session: {session_id}")

        if self._current_session == session_id:
            self._current_session = None

        return session

    def get_current_session(self) -> ProfilingSession | None:
        """Get current profiling session."""
        if self._current_session and self._current_session in self._sessions:
            return self._sessions[self._current_session]
        return None

    @contextmanager
    def time_block(
        self,
        name: str,
        session_id: str | None = None,
        metadata: dict[str, Any] | None = None,
    ):
        """
        Context manager for timing synchronous code blocks.

        Args:
            name: Name of the operation being timed
            session_id: Optional session ID (uses current if not specified)
            metadata: Additional metadata to record

        Example:
            with profiler.time_block("mcts.selection"):
                # perform selection
        """
        if session_id is None:
            session_id = self._current_session

        start_time = time.perf_counter()
        memory_start = self._process.memory_info().rss / (1024 * 1024)
        success = True
        error = None

        try:
            yield
        except Exception as e:
            success = False
            error = str(e)
            raise
        finally:
            end_time = time.perf_counter()
            memory_end = self._process.memory_info().rss / (1024 * 1024)
            elapsed_ms = (end_time - start_time) * 1000

            result = TimingResult(
                name=name,
                elapsed_ms=elapsed_ms,
                start_time=start_time,
                end_time=end_time,
                memory_start_mb=memory_start,
                memory_end_mb=memory_end,
                memory_delta_mb=memory_end - memory_start,
                success=success,
                error=error,
                metadata=metadata or {},
            )

            # Record in session if available
            if session_id and session_id in self._sessions:
                self._sessions[session_id].timings.append(result)

            # Record in aggregates
            self._aggregate_timings[name].append(elapsed_ms)

            self.logger.debug(
                f"Timed block '{name}': {elapsed_ms:.2f}ms",
                extra={
                    "profiling": {
                        "name": name,
                        "elapsed_ms": round(elapsed_ms, 2),
                        "memory_delta_mb": round(result.memory_delta_mb, 2),
                        "success": success,
                    }
                },
            )

    @asynccontextmanager
    async def async_time_block(
        self,
        name: str,
        session_id: str | None = None,
        metadata: dict[str, Any] | None = None,
    ):
        """
        Async context manager for timing asynchronous code blocks.

        Args:
            name: Name of the operation being timed
            session_id: Optional session ID
            metadata: Additional metadata

        Example:
            async with profiler.async_time_block("llm.call"):
                await model.generate(...)
        """
        if session_id is None:
            session_id = self._current_session

        start_time = time.perf_counter()
        memory_start = self._process.memory_info().rss / (1024 * 1024)
        success = True
        error = None

        try:
            yield
        except Exception as e:
            success = False
            error = str(e)
            raise
        finally:
            end_time = time.perf_counter()
            memory_end = self._process.memory_info().rss / (1024 * 1024)
            elapsed_ms = (end_time - start_time) * 1000

            result = TimingResult(
                name=name,
                elapsed_ms=elapsed_ms,
                start_time=start_time,
                end_time=end_time,
                memory_start_mb=memory_start,
                memory_end_mb=memory_end,
                memory_delta_mb=memory_end - memory_start,
                success=success,
                error=error,
                metadata=metadata or {},
            )

            if session_id and session_id in self._sessions:
                self._sessions[session_id].timings.append(result)

            self._aggregate_timings[name].append(elapsed_ms)

            self.logger.debug(
                f"Async timed block '{name}': {elapsed_ms:.2f}ms",
                extra={
                    "profiling": {
                        "name": name,
                        "elapsed_ms": round(elapsed_ms, 2),
                        "memory_delta_mb": round(result.memory_delta_mb, 2),
                        "success": success,
                    }
                },
            )

    def sample_memory(self, session_id: str | None = None) -> dict[str, float]:
        """Sample current memory usage."""
        memory_info = self._process.memory_info()

        sample = {
            "timestamp": time.time(),
            "rss_mb": memory_info.rss / (1024 * 1024),
            "vms_mb": memory_info.vms / (1024 * 1024),
            "percent": self._process.memory_percent(),
        }

        if session_id is None:
            session_id = self._current_session

        if session_id and session_id in self._sessions:
            self._sessions[session_id].memory_samples.append(sample)

        return sample

    def sample_cpu(self, session_id: str | None = None) -> float:
        """Sample current CPU usage."""
        cpu_percent = self._process.cpu_percent()

        if session_id is None:
            session_id = self._current_session

        if session_id and session_id in self._sessions:
            self._sessions[session_id].cpu_samples.append(cpu_percent)

        return cpu_percent

    def add_marker(
        self,
        name: str,
        data: dict[str, Any] | None = None,
        session_id: str | None = None,
    ) -> None:
        """Add a custom marker/event to the profiling session."""
        marker = {
            "timestamp": time.time(),
            "name": name,
            "data": data or {},
        }

        if session_id is None:
            session_id = self._current_session

        if session_id and session_id in self._sessions:
            self._sessions[session_id].markers.append(marker)

        self.logger.debug(f"Added profiling marker: {name}")

    def get_timing_summary(self, name: str | None = None) -> dict[str, Any]:
        """
        Get summary statistics for timed operations.

        Args:
            name: Optional specific operation name (all if None)

        Returns:
            Summary statistics
        """
        if name:
            timings = self._aggregate_timings.get(name, [])
            if not timings:
                return {}
            return self._compute_stats(name, timings)
        else:
            return {op_name: self._compute_stats(op_name, times) for op_name, times in self._aggregate_timings.items()}

    def _compute_stats(self, name: str, timings: list[float]) -> dict[str, Any]:
        """Compute statistics for a list of timings."""
        if not timings:
            return {}

        sorted_timings = sorted(timings)
        n = len(sorted_timings)

        return {
            "name": name,
            "count": n,
            "total_ms": round(sum(timings), 2),
            "mean_ms": round(sum(timings) / n, 2),
            "min_ms": round(min(timings), 2),
            "max_ms": round(max(timings), 2),
            "p50_ms": round(sorted_timings[n // 2], 2),
            "p90_ms": round(sorted_timings[int(n * 0.9)], 2),
            "p95_ms": round(sorted_timings[int(n * 0.95)], 2),
            "p99_ms": round(sorted_timings[min(int(n * 0.99), n - 1)], 2),
        }

    def reset(self) -> None:
        """Reset all profiling data."""
        self._sessions.clear()
        self._current_session = None
        self._aggregate_timings.clear()
        self.logger.info("Profiler reset")


class MemoryProfiler:
    """
    Memory-focused profiler for tracking memory usage patterns.
    """

    def __init__(self):
        self.logger = get_logger("observability.profiling.memory")
        self._process = psutil.Process()
        self._baseline: float | None = None
        self._peak: float = 0.0
        self._samples: list[dict[str, Any]] = []

    def set_baseline(self) -> float:
        """Set current memory as baseline."""
        self._baseline = self._process.memory_info().rss / (1024 * 1024)
        self.logger.info(f"Memory baseline set: {self._baseline:.2f} MB")
        return self._baseline

    def get_current(self) -> float:
        """Get current memory usage in MB."""
        return self._process.memory_info().rss / (1024 * 1024)

    def get_delta(self) -> float:
        """Get memory change from baseline."""
        if self._baseline is None:
            self.set_baseline()
            return 0.0

        current = self.get_current()
        return current - self._baseline

    def sample(self, label: str = "") -> dict[str, Any]:
        """Take a memory sample with optional label."""
        memory_info = self._process.memory_info()
        current_mb = memory_info.rss / (1024 * 1024)

        if current_mb > self._peak:
            self._peak = current_mb

        sample = {
            "timestamp": datetime.utcnow().isoformat(),
            "label": label,
            "rss_mb": round(current_mb, 2),
            "vms_mb": round(memory_info.vms / (1024 * 1024), 2),
            "percent": round(self._process.memory_percent(), 2),
            "delta_from_baseline_mb": round(self.get_delta(), 2) if self._baseline else 0.0,
            "peak_mb": round(self._peak, 2),
        }

        self._samples.append(sample)
        self.logger.debug(f"Memory sample [{label}]: {current_mb:.2f} MB")
        return sample

    def check_leak(self, threshold_mb: float = 10.0) -> dict[str, Any]:
        """
        Check for potential memory leak.

        Args:
            threshold_mb: Memory increase threshold to consider as leak

        Returns:
            Leak detection result
        """
        if self._baseline is None:
            return {"status": "no_baseline", "message": "Set baseline first"}

        current = self.get_current()
        delta = current - self._baseline

        if delta > threshold_mb:
            self.logger.warning(f"Potential memory leak detected: {delta:.2f} MB increase")
            return {
                "status": "potential_leak",
                "baseline_mb": round(self._baseline, 2),
                "current_mb": round(current, 2),
                "delta_mb": round(delta, 2),
                "threshold_mb": threshold_mb,
            }

        return {
            "status": "ok",
            "baseline_mb": round(self._baseline, 2),
            "current_mb": round(current, 2),
            "delta_mb": round(delta, 2),
            "threshold_mb": threshold_mb,
        }

    def get_summary(self) -> dict[str, Any]:
        """Get memory profiling summary."""
        if not self._samples:
            return {"message": "No samples collected"}

        rss_values = [s["rss_mb"] for s in self._samples]

        return {
            "sample_count": len(self._samples),
            "baseline_mb": round(self._baseline, 2) if self._baseline else None,
            "current_mb": round(self.get_current(), 2),
            "peak_mb": round(self._peak, 2),
            "mean_mb": round(sum(rss_values) / len(rss_values), 2),
            "min_mb": round(min(rss_values), 2),
            "max_mb": round(max(rss_values), 2),
        }


@contextmanager
def profile_block(
    name: str,
    metadata: dict[str, Any] | None = None,
):
    """
    Convenience context manager for profiling a code block.

    Uses the global AsyncProfiler singleton.

    Example:
        with profile_block("data_processing", {"batch_size": 100}):
            process_data(batch)
    """
    profiler = AsyncProfiler.get_instance()
    with profiler.time_block(name, metadata=metadata):
        yield


def generate_performance_report(session_id: str | None = None) -> dict[str, Any]:
    """
    Generate a comprehensive performance report.

    Args:
        session_id: Optional specific session (uses current if not specified)

    Returns:
        Performance report with timing summaries, memory stats, etc.
    """
    profiler = AsyncProfiler.get_instance()

    report = {
        "report_time": datetime.utcnow().isoformat(),
        "timing_summary": profiler.get_timing_summary(),
    }

    # Add session-specific data if available
    session = profiler._sessions.get(session_id) if session_id else profiler.get_current_session()

    if session:
        report["session"] = {
            "session_id": session.session_id,
            "start_time": session.start_time.isoformat(),
            "timing_count": len(session.timings),
            "memory_samples": len(session.memory_samples),
            "cpu_samples": len(session.cpu_samples),
            "markers_count": len(session.markers),
        }

        # Compute session-specific stats
        if session.timings:
            session_times = {}
            for timing in session.timings:
                if timing.name not in session_times:
                    session_times[timing.name] = []
                session_times[timing.name].append(timing.elapsed_ms)

            report["session"]["timing_breakdown"] = {
                name: profiler._compute_stats(name, times) for name, times in session_times.items()
            }

        if session.memory_samples:
            rss_values = [s["rss_mb"] for s in session.memory_samples]
            report["session"]["memory_summary"] = {
                "sample_count": len(rss_values),
                "mean_mb": round(sum(rss_values) / len(rss_values), 2),
                "min_mb": round(min(rss_values), 2),
                "max_mb": round(max(rss_values), 2),
            }

        if session.cpu_samples:
            report["session"]["cpu_summary"] = {
                "sample_count": len(session.cpu_samples),
                "mean_percent": round(sum(session.cpu_samples) / len(session.cpu_samples), 2),
                "min_percent": round(min(session.cpu_samples), 2),
                "max_percent": round(max(session.cpu_samples), 2),
            }

    # Current system state
    process = psutil.Process()
    report["current_system"] = {
        "memory_mb": round(process.memory_info().rss / (1024 * 1024), 2),
        "cpu_percent": process.cpu_percent(),
        "thread_count": process.num_threads(),
    }

    return report


def profile_function(name: str | None = None, metadata: dict[str, Any] | None = None):
    """
    Decorator for profiling function execution.

    Args:
        name: Optional custom name (defaults to function name)
        metadata: Additional metadata

    Example:
        @profile_function()
        def process_batch(data):
            ...

        @profile_function(name="custom_name")
        async def async_operation():
            ...
    """

    def decorator(func):
        op_name = name or f"{func.__module__}.{func.__name__}"

        @functools.wraps(func)
        def sync_wrapper(*args, **kwargs):
            profiler = AsyncProfiler.get_instance()
            with profiler.time_block(op_name, metadata=metadata):
                return func(*args, **kwargs)

        @functools.wraps(func)
        async def async_wrapper(*args, **kwargs):
            profiler = AsyncProfiler.get_instance()
            async with profiler.async_time_block(op_name, metadata=metadata):
                return await func(*args, **kwargs)

        if asyncio.iscoroutinefunction(func):
            return async_wrapper
        return sync_wrapper

    return decorator