File size: 23,265 Bytes
40ee6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
"""
Synthetic data generator for training Neural Meta-Controllers.

Provides functionality to generate synthetic training data for meta-controllers
that learn to select the optimal agent (HRM, TRM, or MCTS) based on system state.
"""

import json
from dataclasses import asdict
from typing import Any

import numpy as np
import torch

from src.agents.meta_controller.base import MetaControllerFeatures
from src.agents.meta_controller.utils import features_to_text, normalize_features


class MetaControllerDataGenerator:
    """
    Synthetic data generator for training neural meta-controllers.

    Generates labeled training data by creating random feature vectors
    and determining the optimal agent based on weighted scoring rules.
    The generator supports balanced and unbalanced datasets, multiple
    output formats (tensors, text), and dataset persistence.

    Attributes:
        seed: Random seed for reproducibility.
        rng: NumPy random number generator instance.
        AGENT_NAMES: List of valid agent names.
        LABEL_TO_INDEX: Mapping from agent names to numeric indices.
        INDEX_TO_LABEL: Mapping from numeric indices to agent names.
    """

    AGENT_NAMES = ["hrm", "trm", "mcts"]
    LABEL_TO_INDEX = {"hrm": 0, "trm": 1, "mcts": 2}
    INDEX_TO_LABEL = {0: "hrm", 1: "trm", 2: "mcts"}

    def __init__(self, seed: int = 42) -> None:
        """
        Initialize the data generator with a random seed.

        Args:
            seed: Random seed for reproducibility. Defaults to 42.

        Example:
            >>> generator = MetaControllerDataGenerator(seed=42)
            >>> generator.seed
            42
        """
        self.seed = seed
        self.rng = np.random.default_rng(seed)

    def generate_single_sample(self) -> tuple[MetaControllerFeatures, str]:
        """
        Generate a single training sample with features and optimal agent label.

        Creates random features and determines the optimal agent based on
        weighted scoring rules:
        - If hrm_confidence > 0.7 and highest: select "hrm"
        - If trm_confidence > 0.7 and highest: select "trm"
        - If mcts_value > 0.6 and iteration > 3: select "mcts"
        - Otherwise: select agent with highest score

        Returns:
            Tuple of (MetaControllerFeatures, optimal_agent_label).

        Example:
            >>> generator = MetaControllerDataGenerator(seed=42)
            >>> features, label = generator.generate_single_sample()
            >>> isinstance(features, MetaControllerFeatures)
            True
            >>> label in ['hrm', 'trm', 'mcts']
            True
        """
        # Generate random features
        hrm_confidence = float(self.rng.uniform(0, 1))
        trm_confidence = float(self.rng.uniform(0, 1))
        mcts_value = float(self.rng.uniform(0, 1))

        # Consensus score is average of confidences plus noise
        avg_confidence = (hrm_confidence + trm_confidence + mcts_value) / 3.0
        noise = float(self.rng.uniform(-0.1, 0.1))
        consensus_score = float(np.clip(avg_confidence + noise, 0.0, 1.0))

        # Random categorical and discrete features
        last_agent = str(self.rng.choice(["none", "hrm", "trm", "mcts"]))
        iteration = int(self.rng.integers(0, 11))  # [0, 10] inclusive
        query_length = int(self.rng.integers(10, 5001))  # [10, 5000] inclusive
        has_rag_context = bool(self.rng.choice([True, False]))

        features = MetaControllerFeatures(
            hrm_confidence=hrm_confidence,
            trm_confidence=trm_confidence,
            mcts_value=mcts_value,
            consensus_score=consensus_score,
            last_agent=last_agent,
            iteration=iteration,
            query_length=query_length,
            has_rag_context=has_rag_context,
        )

        # Determine optimal agent based on weighted scoring
        optimal_agent = self._determine_optimal_agent(features)

        return features, optimal_agent

    def _determine_optimal_agent(self, features: MetaControllerFeatures) -> str:
        """
        Determine the optimal agent based on weighted scoring rules.

        Args:
            features: MetaControllerFeatures to evaluate.

        Returns:
            Name of the optimal agent ('hrm', 'trm', or 'mcts').
        """
        hrm_conf = features.hrm_confidence
        trm_conf = features.trm_confidence
        mcts_val = features.mcts_value

        # Check if HRM should be selected (high confidence and highest)
        if hrm_conf > 0.7 and hrm_conf > trm_conf and hrm_conf > mcts_val:
            return "hrm"

        # Check if TRM should be selected (high confidence and highest)
        if trm_conf > 0.7 and trm_conf > hrm_conf and trm_conf > mcts_val:
            return "trm"

        # Check if MCTS should be selected (good value and enough iterations)
        if mcts_val > 0.6 and features.iteration > 3:
            return "mcts"

        # Default: select agent with highest score
        scores = {"hrm": hrm_conf, "trm": trm_conf, "mcts": mcts_val}
        return max(scores, key=lambda k: scores[k])

    def generate_dataset(self, num_samples: int = 1000) -> tuple[list[MetaControllerFeatures], list[str]]:
        """
        Generate a dataset with the specified number of samples.

        Creates an unbalanced dataset where the distribution of labels
        depends on the random feature generation and scoring rules.

        Args:
            num_samples: Number of samples to generate. Defaults to 1000.

        Returns:
            Tuple of (features_list, labels_list).

        Raises:
            ValueError: If num_samples is not positive.

        Example:
            >>> generator = MetaControllerDataGenerator(seed=42)
            >>> features, labels = generator.generate_dataset(100)
            >>> len(features)
            100
            >>> len(labels)
            100
            >>> all(isinstance(f, MetaControllerFeatures) for f in features)
            True
        """
        if num_samples <= 0:
            raise ValueError(f"num_samples must be positive, got {num_samples}")

        features_list: list[MetaControllerFeatures] = []
        labels_list: list[str] = []

        for _ in range(num_samples):
            features, label = self.generate_single_sample()
            features_list.append(features)
            labels_list.append(label)

        return features_list, labels_list

    def generate_balanced_dataset(
        self, num_samples_per_class: int = 500
    ) -> tuple[list[MetaControllerFeatures], list[str]]:
        """
        Generate a balanced dataset with equal samples per agent class.

        Creates samples biased toward each agent class to ensure balanced
        representation. This is useful for training when class imbalance
        would otherwise affect model performance.

        Args:
            num_samples_per_class: Number of samples per agent class.
                Defaults to 500.

        Returns:
            Tuple of (features_list, labels_list) with balanced classes.

        Raises:
            ValueError: If num_samples_per_class is not positive.

        Example:
            >>> generator = MetaControllerDataGenerator(seed=42)
            >>> features, labels = generator.generate_balanced_dataset(10)
            >>> labels.count('hrm')
            10
            >>> labels.count('trm')
            10
            >>> labels.count('mcts')
            10
        """
        if num_samples_per_class <= 0:
            raise ValueError(f"num_samples_per_class must be positive, got {num_samples_per_class}")

        features_list: list[MetaControllerFeatures] = []
        labels_list: list[str] = []

        # Generate samples for each class
        for target_agent in self.AGENT_NAMES:
            count = 0
            max_attempts = num_samples_per_class * 100  # Prevent infinite loop

            attempts = 0
            while count < num_samples_per_class and attempts < max_attempts:
                attempts += 1
                features = self._generate_biased_features(target_agent)
                label = self._determine_optimal_agent(features)

                if label == target_agent:
                    features_list.append(features)
                    labels_list.append(label)
                    count += 1

            # If we couldn't generate enough samples, force generate the rest
            while count < num_samples_per_class:
                features = self._generate_forced_features(target_agent)
                features_list.append(features)
                labels_list.append(target_agent)
                count += 1

        return features_list, labels_list

    def _generate_biased_features(self, target_agent: str) -> MetaControllerFeatures:
        """
        Generate features biased toward selecting a specific agent.

        Args:
            target_agent: The agent to bias toward ('hrm', 'trm', or 'mcts').

        Returns:
            MetaControllerFeatures biased toward the target agent.
        """
        if target_agent == "hrm":
            # Bias toward high HRM confidence
            hrm_confidence = float(self.rng.uniform(0.7, 1.0))
            trm_confidence = float(self.rng.uniform(0, hrm_confidence - 0.1))
            mcts_value = float(self.rng.uniform(0, hrm_confidence - 0.1))
        elif target_agent == "trm":
            # Bias toward high TRM confidence
            trm_confidence = float(self.rng.uniform(0.7, 1.0))
            hrm_confidence = float(self.rng.uniform(0, trm_confidence - 0.1))
            mcts_value = float(self.rng.uniform(0, trm_confidence - 0.1))
        else:  # mcts
            # Bias toward high MCTS value with enough iterations
            mcts_value = float(self.rng.uniform(0.6, 1.0))
            hrm_confidence = float(self.rng.uniform(0, 0.7))
            trm_confidence = float(self.rng.uniform(0, 0.7))

        # Ensure valid ranges
        hrm_confidence = float(np.clip(hrm_confidence, 0.0, 1.0))
        trm_confidence = float(np.clip(trm_confidence, 0.0, 1.0))
        mcts_value = float(np.clip(mcts_value, 0.0, 1.0))

        avg_confidence = (hrm_confidence + trm_confidence + mcts_value) / 3.0
        noise = float(self.rng.uniform(-0.1, 0.1))
        consensus_score = float(np.clip(avg_confidence + noise, 0.0, 1.0))

        last_agent = str(self.rng.choice(["none", "hrm", "trm", "mcts"]))

        # For MCTS, bias iteration to be > 3
        iteration = int(self.rng.integers(4, 11)) if target_agent == "mcts" else int(self.rng.integers(0, 11))

        query_length = int(self.rng.integers(10, 5001))
        has_rag_context = bool(self.rng.choice([True, False]))

        return MetaControllerFeatures(
            hrm_confidence=hrm_confidence,
            trm_confidence=trm_confidence,
            mcts_value=mcts_value,
            consensus_score=consensus_score,
            last_agent=last_agent,
            iteration=iteration,
            query_length=query_length,
            has_rag_context=has_rag_context,
        )

    def _generate_forced_features(self, target_agent: str) -> MetaControllerFeatures:
        """
        Generate features that will definitely select a specific agent.

        Args:
            target_agent: The agent to force selection of.

        Returns:
            MetaControllerFeatures that will result in target_agent selection.
        """
        if target_agent == "hrm":
            hrm_confidence = 0.85
            trm_confidence = 0.3
            mcts_value = 0.3
            iteration = 2
        elif target_agent == "trm":
            hrm_confidence = 0.3
            trm_confidence = 0.85
            mcts_value = 0.3
            iteration = 2
        else:  # mcts
            hrm_confidence = 0.5
            trm_confidence = 0.5
            mcts_value = 0.75
            iteration = 5

        avg_confidence = (hrm_confidence + trm_confidence + mcts_value) / 3.0
        noise = float(self.rng.uniform(-0.05, 0.05))
        consensus_score = float(np.clip(avg_confidence + noise, 0.0, 1.0))

        return MetaControllerFeatures(
            hrm_confidence=hrm_confidence,
            trm_confidence=trm_confidence,
            mcts_value=mcts_value,
            consensus_score=consensus_score,
            last_agent=str(self.rng.choice(["none", "hrm", "trm", "mcts"])),
            iteration=iteration,
            query_length=int(self.rng.integers(10, 5001)),
            has_rag_context=bool(self.rng.choice([True, False])),
        )

    def to_tensor_dataset(
        self, features_list: list[MetaControllerFeatures], labels_list: list[str]
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """
        Convert features and labels to PyTorch tensors.

        Uses normalize_features to convert each feature set to a 10-dimensional
        vector, and converts string labels to numeric indices.

        Args:
            features_list: List of MetaControllerFeatures instances.
            labels_list: List of agent name strings ('hrm', 'trm', 'mcts').

        Returns:
            Tuple of (X tensor shape (N, 10), y tensor shape (N,)).
            X contains normalized features as float32.
            y contains label indices as int64.

        Raises:
            ValueError: If lists have different lengths or are empty.
            KeyError: If labels_list contains invalid agent names.

        Example:
            >>> generator = MetaControllerDataGenerator(seed=42)
            >>> features, labels = generator.generate_dataset(10)
            >>> X, y = generator.to_tensor_dataset(features, labels)
            >>> X.shape
            torch.Size([10, 10])
            >>> y.shape
            torch.Size([10])
            >>> X.dtype
            torch.float32
            >>> y.dtype
            torch.int64
        """
        if len(features_list) != len(labels_list):
            raise ValueError(
                f"features_list and labels_list must have same length, got {len(features_list)} and {len(labels_list)}"
            )

        if len(features_list) == 0:
            raise ValueError("Cannot convert empty dataset to tensors")

        # Convert features to normalized vectors
        X_list = [normalize_features(f) for f in features_list]
        X = torch.tensor(X_list, dtype=torch.float32)

        # Convert labels to indices
        try:
            y_list = [self.LABEL_TO_INDEX[label] for label in labels_list]
        except KeyError as e:
            raise KeyError(f"Invalid agent label: {e}. Valid labels: {self.AGENT_NAMES}")
        y = torch.tensor(y_list, dtype=torch.int64)

        return X, y

    def to_text_dataset(
        self, features_list: list[MetaControllerFeatures], labels_list: list[str]
    ) -> tuple[list[str], list[int]]:
        """
        Convert features to text format and labels to indices.

        Uses features_to_text to create human-readable text representations
        suitable for text-based models like BERT.

        Args:
            features_list: List of MetaControllerFeatures instances.
            labels_list: List of agent name strings ('hrm', 'trm', 'mcts').

        Returns:
            Tuple of (text_list, label_indices).
            text_list contains structured text representations.
            label_indices contains integer indices for each label.

        Raises:
            ValueError: If lists have different lengths.
            KeyError: If labels_list contains invalid agent names.

        Example:
            >>> generator = MetaControllerDataGenerator(seed=42)
            >>> features, labels = generator.generate_dataset(10)
            >>> texts, indices = generator.to_text_dataset(features, labels)
            >>> len(texts)
            10
            >>> all(isinstance(t, str) for t in texts)
            True
            >>> all(i in [0, 1, 2] for i in indices)
            True
        """
        if len(features_list) != len(labels_list):
            raise ValueError(
                f"features_list and labels_list must have same length, got {len(features_list)} and {len(labels_list)}"
            )

        # Convert features to text
        text_list = [features_to_text(f) for f in features_list]

        # Convert labels to indices
        try:
            label_indices = [self.LABEL_TO_INDEX[label] for label in labels_list]
        except KeyError as e:
            raise KeyError(f"Invalid agent label: {e}. Valid labels: {self.AGENT_NAMES}")

        return text_list, label_indices

    def split_dataset(
        self,
        X: Any,
        y: Any,
        train_ratio: float = 0.7,
        val_ratio: float = 0.15,
    ) -> dict[str, Any]:
        """
        Split dataset into train, validation, and test sets.

        Shuffles the data and splits it according to the specified ratios.
        The test ratio is automatically calculated as (1 - train_ratio - val_ratio).

        Args:
            X: Feature data (tensor, array, or list).
            y: Label data (tensor, array, or list).
            train_ratio: Proportion for training set. Defaults to 0.7.
            val_ratio: Proportion for validation set. Defaults to 0.15.

        Returns:
            Dictionary with keys:
            - 'X_train': Training features
            - 'y_train': Training labels
            - 'X_val': Validation features
            - 'y_val': Validation labels
            - 'X_test': Test features
            - 'y_test': Test labels

        Raises:
            ValueError: If ratios are invalid or data sizes don't match.

        Example:
            >>> generator = MetaControllerDataGenerator(seed=42)
            >>> features, labels = generator.generate_dataset(100)
            >>> X, y = generator.to_tensor_dataset(features, labels)
            >>> splits = generator.split_dataset(X, y, 0.7, 0.15)
            >>> 'X_train' in splits
            True
            >>> splits['X_train'].shape[0] == 70
            True
        """
        # Validate ratios
        if not (0 < train_ratio < 1):
            raise ValueError(f"train_ratio must be in (0, 1), got {train_ratio}")
        if not (0 < val_ratio < 1):
            raise ValueError(f"val_ratio must be in (0, 1), got {val_ratio}")
        if train_ratio + val_ratio >= 1:
            raise ValueError(f"train_ratio + val_ratio must be < 1, got {train_ratio + val_ratio}")

        # Get dataset size
        n_samples = X.shape[0] if isinstance(X, (torch.Tensor, np.ndarray)) else len(X)

        n_labels = y.shape[0] if isinstance(y, (torch.Tensor, np.ndarray)) else len(y)

        if n_samples != n_labels:
            raise ValueError(f"X and y must have same number of samples, got {n_samples} and {n_labels}")

        if n_samples == 0:
            raise ValueError("Cannot split empty dataset")

        # Generate shuffled indices
        indices = self.rng.permutation(n_samples)

        # Calculate split points
        train_end = int(n_samples * train_ratio)
        val_end = train_end + int(n_samples * val_ratio)

        train_indices = indices[:train_end]
        val_indices = indices[train_end:val_end]
        test_indices = indices[val_end:]

        # Split data based on type
        if isinstance(X, (torch.Tensor, np.ndarray)):
            X_train = X[train_indices]
            X_val = X[val_indices]
            X_test = X[test_indices]
            y_train = y[train_indices]
            y_val = y[val_indices]
            y_test = y[test_indices]
        else:
            # Assume list-like
            X_train = [X[i] for i in train_indices]
            X_val = [X[i] for i in val_indices]
            X_test = [X[i] for i in test_indices]
            y_train = [y[i] for i in train_indices]
            y_val = [y[i] for i in val_indices]
            y_test = [y[i] for i in test_indices]

        return {
            "X_train": X_train,
            "y_train": y_train,
            "X_val": X_val,
            "y_val": y_val,
            "X_test": X_test,
            "y_test": y_test,
        }

    def save_dataset(
        self,
        features_list: list[MetaControllerFeatures],
        labels_list: list[str],
        path: str,
    ) -> None:
        """
        Save dataset to a JSON file.

        Converts MetaControllerFeatures to dictionaries for JSON serialization.

        Args:
            features_list: List of MetaControllerFeatures instances.
            labels_list: List of agent name strings.
            path: Path to save the JSON file.

        Raises:
            ValueError: If lists have different lengths.
            IOError: If file cannot be written.

        Example:
            >>> generator = MetaControllerDataGenerator(seed=42)
            >>> features, labels = generator.generate_dataset(10)
            >>> generator.save_dataset(features, labels, 'dataset.json')
        """
        if len(features_list) != len(labels_list):
            raise ValueError(
                f"features_list and labels_list must have same length, got {len(features_list)} and {len(labels_list)}"
            )

        # Convert to serializable format
        data = {
            "seed": self.seed,
            "num_samples": len(features_list),
            "samples": [
                {"features": asdict(f), "label": label} for f, label in zip(features_list, labels_list, strict=False)
            ],
        }

        with open(path, "w", encoding="utf-8") as f:
            json.dump(data, f, indent=2)

    def load_dataset(self, path: str) -> tuple[list[MetaControllerFeatures], list[str]]:
        """
        Load dataset from a JSON file.

        Reconstructs MetaControllerFeatures from saved dictionaries.

        Args:
            path: Path to the JSON file to load.

        Returns:
            Tuple of (features_list, labels_list).

        Raises:
            IOError: If file cannot be read.
            KeyError: If JSON structure is invalid.
            TypeError: If data types are incorrect.

        Example:
            >>> generator = MetaControllerDataGenerator(seed=42)
            >>> features, labels = generator.load_dataset('dataset.json')
            >>> isinstance(features[0], MetaControllerFeatures)
            True
        """
        with open(path, encoding="utf-8") as f:
            data = json.load(f)

        features_list: list[MetaControllerFeatures] = []
        labels_list: list[str] = []

        for sample in data["samples"]:
            features_dict = sample["features"]
            features = MetaControllerFeatures(
                hrm_confidence=float(features_dict["hrm_confidence"]),
                trm_confidence=float(features_dict["trm_confidence"]),
                mcts_value=float(features_dict["mcts_value"]),
                consensus_score=float(features_dict["consensus_score"]),
                last_agent=str(features_dict["last_agent"]),
                iteration=int(features_dict["iteration"]),
                query_length=int(features_dict["query_length"]),
                has_rag_context=bool(features_dict["has_rag_context"]),
            )
            features_list.append(features)
            labels_list.append(str(sample["label"]))

        return features_list, labels_list