Spaces:
Paused
Paused
File size: 12,856 Bytes
d476512 0c074b9 14f96db 0c074b9 14f96db 29c7e98 0c074b9 039f399 0c074b9 14f96db 0c074b9 14f96db 0c074b9 14f96db 0c074b9 14f96db 0c074b9 14f96db 0c074b9 14f96db f357dd6 14f96db 0c074b9 f357dd6 14f96db 0c074b9 f357dd6 14f96db f357dd6 0c074b9 a731f03 0c074b9 d476512 0c074b9 5e38562 0c074b9 c3d752c 0c074b9 c3d752c 0c074b9 29c7e98 0c074b9 443b650 0c074b9 74be43a 0c074b9 31852bc 0c074b9 31852bc 341059a 31852bc 1bbfe6d 31852bc d476512 31852bc d476512 31852bc d476512 1bbfe6d d476512 31852bc 1bbfe6d 31852bc 1bbfe6d 31852bc d476512 31852bc 1bbfe6d 31852bc d476512 31852bc d476512 0c074b9 31852bc d476512 1bbfe6d 74be43a 0c074b9 31852bc d476512 31852bc 0c074b9 31852bc 1bbfe6d 31852bc 0c074b9 31852bc 1bbfe6d 31852bc d476512 31852bc d476512 31852bc d476512 31852bc 0c074b9 31852bc 0c074b9 aa103f3 31852bc 443b650 d476512 43389f1 0c074b9 d992f07 0c074b9 b5b4fe3 0c074b9 31852bc 0c074b9 31852bc 0c074b9 31852bc 0c074b9 31852bc 0c074b9 31852bc 0c074b9 a731f03 d476512 31852bc d476512 31852bc d476512 31852bc b5b4fe3 0c074b9 31852bc 0c074b9 31852bc a731f03 0c074b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import re
import tempfile
from importlib.resources import files
import gradio as gr
import soundfile as sf
import torch
import torchcodec
from cached_path import cached_path
from omegaconf import OmegaConf
from ipa.ipa import g2p_object, text_to_ipa
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
from f5_tts.infer.utils_infer import (
device,
hop_length,
infer_process,
load_checkpoint,
load_vocoder,
mel_spec_type,
n_fft,
n_mel_channels,
ode_method,
preprocess_ref_audio_text,
remove_silence_for_generated_wav,
save_spectrogram,
target_sample_rate,
win_length,
)
from f5_tts.model import CFM, DiT
from f5_tts.model.utils import get_tokenizer
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
else:
return func
vocoder = load_vocoder()
def load_model(
model_cls,
model_cfg,
ckpt_path,
mel_spec_type=mel_spec_type,
vocab_file="",
ode_method=ode_method,
use_ema=True,
device=device,
fp16=False,
):
if vocab_file == "":
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
tokenizer = "custom"
print("\nvocab : ", vocab_file)
print("token : ", tokenizer)
print("model : ", ckpt_path, "\n")
vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer)
model = CFM(
transformer=model_cls(
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
),
mel_spec_kwargs=dict(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=mel_spec_type,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
dtype = torch.float32 if mel_spec_type == "bigvgan" or not fp16 else None
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
return model
def load_f5tts(ckpt_path, vocab_path, old=False, fp16=False):
ckpt_path = str(cached_path(ckpt_path))
F5TTS_model_cfg = dict(
dim=1024,
depth=22,
heads=16,
ff_mult=2,
text_dim=512,
conv_layers=4,
text_mask_padding=not old,
pe_attn_head=1 if old else None,
)
vocab_path = str(cached_path(vocab_path))
return load_model(
DiT,
F5TTS_model_cfg,
ckpt_path,
vocab_file=vocab_path,
use_ema=old,
fp16=fp16,
)
OmegaConf.register_new_resolver("load_f5tts", load_f5tts)
models_config = OmegaConf.to_object(OmegaConf.load("configs/models.yaml"))
refs_config = OmegaConf.to_object(OmegaConf.load("configs/refs.yaml"))
examples_config = OmegaConf.to_object(OmegaConf.load("configs/examples.yaml"))
DEFAULT_MODEL_ID = list(models_config.keys())[0]
ETHNICITIES = list(set([k.split("_")[0] for k in g2p_object.keys()]))
@gpu_decorator
def infer(
ref_audio_orig,
ref_text,
gen_text,
model,
remove_silence=False,
cross_fade_duration=0.15,
nfe_step=32,
speed=1,
show_info=gr.Info,
):
if not ref_audio_orig:
gr.Warning("Please provide reference audio.")
return gr.update(), gr.update(), ref_text
if not gen_text.strip():
gr.Warning("Please enter text to generate.")
return gr.update(), gr.update(), ref_text
ref_audio, ref_text = preprocess_ref_audio_text(
ref_audio_orig, ref_text, show_info=show_info
)
final_wave, final_sample_rate, combined_spectrogram = infer_process(
ref_audio,
ref_text,
gen_text,
model,
vocoder,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
speed=speed,
show_info=show_info,
progress=gr.Progress(),
)
# Remove silence
if remove_silence:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, final_wave, final_sample_rate)
remove_silence_for_generated_wav(f.name)
final_wave = torchcodec.decoders.AudioDecoder(f.name).get_all_samples().data
final_wave = final_wave.squeeze().cpu().numpy()
# Save the spectrogram
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(combined_spectrogram, spectrogram_path)
return (final_sample_rate, final_wave), spectrogram_path
def get_title():
with open("DEMO.md", encoding="utf-8") as tong:
return tong.readline().strip("# ")
demo = gr.Blocks(
title=get_title(),
css="""@import url(https://tauhu.tw/tauhu-oo.css);
.textonly textarea {border-width: 0px !important; }
""",
theme=gr.themes.Default(
font=(
"tauhu-oo",
gr.themes.GoogleFont("Source Sans Pro"),
"ui-sans-serif",
"system-ui",
"sans-serif",
)
),
js="""
function addButtonsEvent() {
const buttons = document.querySelectorAll("#head-html-block button");
buttons.forEach(button => {
button.addEventListener("click", () => {
navigator.clipboard.writeText(button.innerText);
});
});
}
""",
)
with demo:
with open("DEMO.md") as tong:
gr.Markdown(tong.read())
gr.HTML(
"特殊符號請複製使用(滑鼠點擊即可複製):<button>é</button> <button>ṟ</button> <button>ɨ</button> <button>ʉ</button>",
padding=False,
elem_id="head-html-block",
)
with gr.Tab("預設配音員"):
with gr.Row():
with gr.Column():
default_speaker_ethnicity = gr.Dropdown(
choices=ETHNICITIES,
label="步驟一:選擇族別",
value="阿美",
filterable=False,
)
def get_refs_by_perfix(prefix: str):
return [r for r in refs_config.keys() if r.startswith(prefix)]
default_speaker_refs = gr.Dropdown(
choices=get_refs_by_perfix(default_speaker_ethnicity.value),
label="步驟二:選擇配音員",
value=get_refs_by_perfix(default_speaker_ethnicity.value)[0],
filterable=False,
)
default_speaker_gen_text_input = gr.Textbox(
label="步驟三:輸入文字(上限 300 字元)",
value="",
)
default_speaker_generate_btn = gr.Button(
"步驟四:開始合成", variant="primary"
)
with gr.Column():
default_speaker_audio_output = gr.Audio(
label="合成結果", show_share_button=False, show_download_button=True
)
with gr.Tab("自己當配音員"):
with gr.Row():
with gr.Column():
custom_speaker_ethnicity = gr.Dropdown(
choices=ETHNICITIES,
label="步驟一:選擇族別與語別",
value="阿美",
filterable=False,
)
custom_speaker_language = gr.Dropdown(
choices=[
k
for k in g2p_object.keys()
if k.startswith(custom_speaker_ethnicity.value)
],
value=[
k
for k in g2p_object.keys()
if k.startswith(custom_speaker_ethnicity.value)
][0],
filterable=False,
show_label=False,
)
custom_speaker_ref_text_input = gr.Textbox(
value=refs_config[
get_refs_by_perfix(custom_speaker_language.value)[0]
]["text"],
interactive=False,
label="步驟二:點選🎙️錄製下方句子,或上傳與句子相符的音檔",
elem_classes="textonly",
)
custom_speaker_audio_input = gr.Audio(
type="filepath",
sources=["microphone", "upload"],
waveform_options=gr.WaveformOptions(
sample_rate=24000,
),
label="錄製或上傳",
)
custom_speaker_gen_text_input = gr.Textbox(
label="步驟三:輸入合成文字(上限 300 字元)",
value="",
)
custom_speaker_generate_btn = gr.Button(
"步驟四:開始合成", variant="primary"
)
with gr.Column():
custom_speaker_audio_output = gr.Audio(
label="合成結果", show_share_button=False, show_download_button=True
)
default_speaker_ethnicity.change(
lambda ethnicity: gr.Dropdown(
choices=get_refs_by_perfix(ethnicity),
value=get_refs_by_perfix(ethnicity)[0],
),
inputs=[default_speaker_ethnicity],
outputs=[default_speaker_refs],
)
@gpu_decorator
def default_speaker_tts(
ref: str,
gen_text_input: str,
):
language = re.sub(r"_[男女]聲[12]?", "", ref)
ref_text_input = refs_config[ref]["text"]
ref_audio_input = refs_config[ref]["wav"]
gen_text_input = gen_text_input.strip()
if len(gen_text_input) == 0:
raise gr.Error("請勿輸入空字串。")
if gen_text_input[-1] not in [".", "?", "!", ",", ";", ":"]:
gen_text_input += "."
ignore_punctuation = False
ipa_with_ng = False
ref_text_input = text_to_ipa(
ref_text_input, language, ignore_punctuation, ipa_with_ng
)
gen_text_input = text_to_ipa(
gen_text_input, language, ignore_punctuation, ipa_with_ng
)
audio_out, _spectrogram_path = infer(
ref_audio_input,
ref_text_input,
gen_text_input,
models_config[DEFAULT_MODEL_ID],
)
return audio_out
default_speaker_generate_btn.click(
default_speaker_tts,
inputs=[
default_speaker_refs,
default_speaker_gen_text_input,
],
outputs=[default_speaker_audio_output],
)
custom_speaker_ethnicity.change(
lambda ethnicity: gr.Dropdown(
choices=[k for k in g2p_object.keys() if k.startswith(ethnicity)],
value=[k for k in g2p_object.keys() if k.startswith(ethnicity)][0],
visible=len([k for k in g2p_object.keys() if k.startswith(ethnicity)]) > 1,
),
inputs=[custom_speaker_ethnicity],
outputs=[custom_speaker_language],
)
custom_speaker_language.change(
lambda lang: gr.Textbox(
value=refs_config[get_refs_by_perfix(lang)[0]]["text"],
),
inputs=[custom_speaker_language],
outputs=[custom_speaker_ref_text_input],
)
@gpu_decorator
def custom_speaker_tts(
language: str,
ref_text_input: str,
ref_audio_input: str,
gen_text_input: str,
):
ref_text_input = ref_text_input.strip()
if len(ref_text_input) == 0:
raise gr.Error("請勿輸入空字串。")
gen_text_input = gen_text_input.strip()
if len(gen_text_input) == 0:
raise gr.Error("請勿輸入空字串。")
ignore_punctuation = False
ipa_with_ng = False
if gen_text_input[-1] not in [".", "?", "!", ",", ";", ":"]:
gen_text_input += "."
ref_text_input = text_to_ipa(
ref_text_input, language, ignore_punctuation, ipa_with_ng
)
gen_text_input = text_to_ipa(
gen_text_input, language, ignore_punctuation, ipa_with_ng
)
audio_out, _spectrogram_path = infer(
ref_audio_input,
ref_text_input,
gen_text_input,
models_config[DEFAULT_MODEL_ID],
)
return audio_out
custom_speaker_generate_btn.click(
custom_speaker_tts,
inputs=[
custom_speaker_language,
custom_speaker_ref_text_input,
custom_speaker_audio_input,
custom_speaker_gen_text_input,
],
outputs=[custom_speaker_audio_output],
)
demo.launch()
|