Spaces:
Runtime error
Runtime error
Commit
·
39cc970
1
Parent(s):
e10af0d
add load model outside a function
Browse files
app.py
CHANGED
|
@@ -20,6 +20,7 @@ vq_model = RQBottleneckTransformer.load_model(
|
|
| 20 |
"whisper-vq-stoks-medium-en+pl-fixed.model"
|
| 21 |
).to(device)
|
| 22 |
vq_model.ensure_whisper(device)
|
|
|
|
| 23 |
@spaces.GPU
|
| 24 |
def audio_to_sound_tokens_whisperspeech(audio_path):
|
| 25 |
wav, sr = torchaudio.load(audio_path)
|
|
@@ -31,6 +32,7 @@ def audio_to_sound_tokens_whisperspeech(audio_path):
|
|
| 31 |
|
| 32 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
| 33 |
return f'<|sound_start|>{result}<|sound_end|>'
|
|
|
|
| 34 |
@spaces.GPU
|
| 35 |
def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
|
| 36 |
wav, sr = torchaudio.load(audio_path)
|
|
@@ -42,45 +44,28 @@ def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
|
|
| 42 |
|
| 43 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
| 44 |
return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'
|
| 45 |
-
def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device="cuda"):
|
| 46 |
-
model = EncodecModel.encodec_model_24khz()
|
| 47 |
-
model.set_target_bandwidth(target_bandwidth)
|
| 48 |
-
model.to(device)
|
| 49 |
-
|
| 50 |
-
wav, sr = torchaudio.load(audio_path)
|
| 51 |
-
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
|
| 52 |
-
wav = wav.unsqueeze(0).to(device)
|
| 53 |
-
|
| 54 |
-
with torch.no_grad():
|
| 55 |
-
encoded_frames = model.encode(wav)
|
| 56 |
-
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1)
|
| 57 |
-
|
| 58 |
-
audio_code1, audio_code2 = codes[0][0], codes[0][1]
|
| 59 |
-
flatten_tokens = torch.stack((audio_code1, audio_code2), dim=1).flatten().tolist()
|
| 60 |
-
result = ''.join(f'<|sound_{num:04d}|>' for num in flatten_tokens)
|
| 61 |
-
return f'<|sound_start|>{result}<|sound_end|>'
|
| 62 |
-
@spaces.GPU
|
| 63 |
-
def setup_pipeline(model_path, use_4bit=False, use_8bit=False):
|
| 64 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 65 |
-
model_kwargs = {"device_map": "auto"}
|
| 66 |
-
if use_8bit:
|
| 67 |
-
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
| 68 |
-
load_in_8bit=True,
|
| 69 |
-
llm_int8_enable_fp32_cpu_offload=False,
|
| 70 |
-
llm_int8_has_fp16_weight=False,
|
| 71 |
-
)
|
| 72 |
-
else:
|
| 73 |
-
model_kwargs["torch_dtype"] = torch.bfloat16
|
| 74 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
| 75 |
-
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 76 |
|
| 77 |
tts = TTSProcessor(device)
|
|
|
|
| 78 |
llm_path = "homebrewltd/Llama3.1-s-instruct-2024-08-19-epoch-3"
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
tokenizer = pipe.tokenizer
|
| 81 |
model = pipe.model
|
| 82 |
# print(tokenizer.encode("<|sound_0001|>", add_special_tokens=False))# return the audio tensor
|
| 83 |
# print(tokenizer.eos_token)
|
|
|
|
|
|
|
| 84 |
@spaces.GPU
|
| 85 |
def text_to_audio_file(text):
|
| 86 |
# gen a random id for the audio file
|
|
@@ -96,6 +81,8 @@ def text_to_audio_file(text):
|
|
| 96 |
# torchaudio.save(temp_file, audio.cpu(), sample_rate=24000)
|
| 97 |
print(f"Saved audio to {temp_file}")
|
| 98 |
return temp_file
|
|
|
|
|
|
|
| 99 |
@spaces.GPU
|
| 100 |
def process_input(input_type, text_input=None, audio_file=None):
|
| 101 |
# if input_type == "text":
|
|
@@ -106,6 +93,7 @@ def process_input(input_type, text_input=None, audio_file=None):
|
|
| 106 |
|
| 107 |
# if input_type == "text":
|
| 108 |
# os.remove(audio_file)
|
|
|
|
| 109 |
@spaces.GPU
|
| 110 |
def process_transcribe_input(input_type, text_input=None, audio_file=None):
|
| 111 |
# if input_type == "text":
|
|
@@ -124,6 +112,7 @@ class StopOnTokens(StoppingCriteria):
|
|
| 124 |
if input_ids[0][-1] == stop_id:
|
| 125 |
return True
|
| 126 |
return False
|
|
|
|
| 127 |
@spaces.GPU
|
| 128 |
def process_audio(audio_file, transcript=False):
|
| 129 |
if audio_file is None:
|
|
|
|
| 20 |
"whisper-vq-stoks-medium-en+pl-fixed.model"
|
| 21 |
).to(device)
|
| 22 |
vq_model.ensure_whisper(device)
|
| 23 |
+
|
| 24 |
@spaces.GPU
|
| 25 |
def audio_to_sound_tokens_whisperspeech(audio_path):
|
| 26 |
wav, sr = torchaudio.load(audio_path)
|
|
|
|
| 32 |
|
| 33 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
| 34 |
return f'<|sound_start|>{result}<|sound_end|>'
|
| 35 |
+
|
| 36 |
@spaces.GPU
|
| 37 |
def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
|
| 38 |
wav, sr = torchaudio.load(audio_path)
|
|
|
|
| 44 |
|
| 45 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
| 46 |
return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
tts = TTSProcessor(device)
|
| 49 |
+
use_8bit = False
|
| 50 |
llm_path = "homebrewltd/Llama3.1-s-instruct-2024-08-19-epoch-3"
|
| 51 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_path)
|
| 52 |
+
model_kwargs = {"device_map": "auto"}
|
| 53 |
+
if use_8bit:
|
| 54 |
+
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
| 55 |
+
load_in_8bit=True,
|
| 56 |
+
llm_int8_enable_fp32_cpu_offload=False,
|
| 57 |
+
llm_int8_has_fp16_weight=False,
|
| 58 |
+
)
|
| 59 |
+
else:
|
| 60 |
+
model_kwargs["torch_dtype"] = torch.bfloat16
|
| 61 |
+
model = AutoModelForCausalLM.from_pretrained(llm_path, **model_kwargs)
|
| 62 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 63 |
tokenizer = pipe.tokenizer
|
| 64 |
model = pipe.model
|
| 65 |
# print(tokenizer.encode("<|sound_0001|>", add_special_tokens=False))# return the audio tensor
|
| 66 |
# print(tokenizer.eos_token)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
@spaces.GPU
|
| 70 |
def text_to_audio_file(text):
|
| 71 |
# gen a random id for the audio file
|
|
|
|
| 81 |
# torchaudio.save(temp_file, audio.cpu(), sample_rate=24000)
|
| 82 |
print(f"Saved audio to {temp_file}")
|
| 83 |
return temp_file
|
| 84 |
+
|
| 85 |
+
|
| 86 |
@spaces.GPU
|
| 87 |
def process_input(input_type, text_input=None, audio_file=None):
|
| 88 |
# if input_type == "text":
|
|
|
|
| 93 |
|
| 94 |
# if input_type == "text":
|
| 95 |
# os.remove(audio_file)
|
| 96 |
+
|
| 97 |
@spaces.GPU
|
| 98 |
def process_transcribe_input(input_type, text_input=None, audio_file=None):
|
| 99 |
# if input_type == "text":
|
|
|
|
| 112 |
if input_ids[0][-1] == stop_id:
|
| 113 |
return True
|
| 114 |
return False
|
| 115 |
+
|
| 116 |
@spaces.GPU
|
| 117 |
def process_audio(audio_file, transcript=False):
|
| 118 |
if audio_file is None:
|