File size: 19,194 Bytes
7dbb3a1 8cd4c71 7dbb3a1 0fed93a 7dbb3a1 0fed93a 7dbb3a1 8cd4c71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from pyvis.network import Network
from pprint import pprint
import networkx as nx
import gradio as gr
import re
import datasets
from huggingface_hub import login, HfApi
from datasets import Dataset, load_dataset
from rapidfuzz import fuzz, process
import math
import pandas as pd
import gspread
import torch
import json
from typing import Callable, Optional
from dataclasses import dataclass
from datasets import load_dataset
from transformers import (
AutoModelForSequenceClassification,
TrainingArguments,
Trainer,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
pipeline
)
from peft import PeftModel, LoraConfig, get_peft_model, TaskType
# Setup
REPO_ID_NEAR_FIELD_RAW = "milistu/AMAZON-Products-2023"
REPO_ID_NEAR_FIELD = "aslan-ng/amazon_products_2023"
REPO_ID_FAR_FIELD = "aslan-ng/amazon_products_2025"
REPO_ID_LORA_GREEN_PATENTS = "aslan-ng/lora-green-patents"
def product_quality_score(average_rating: float, rating_number: int):
"""
Bayesian Average (Amazon-style)
Args:
avg_rating: product's average rating
rating_number: number of reviews
"""
m = 1 # Minimum number of reviews required (tunable)
C = 3.5 # Global average rating (baseline)
if rating_number <= 0 or average_rating is None:
return C # fallback to global mean
return (rating_number / (rating_number + m)) * average_rating + (m / (rating_number + m)) * C
def load_near_field_raw_from_huggingface():
"""
Load the raw near-field dataset from HuggingFace.
"""
ds = datasets.load_dataset(REPO_ID_NEAR_FIELD_RAW, split="train")
print("Initial size: ", len(ds))
# Drop the extra categories
main_categories_to_remove = ["meta_Books", "meta_CDs_and_Vinyl", "meta_Digital_Music", "meta_Gift_Cards", "meta_Grocery_and_Gourmet_Food",
"meta_Magazine_Subscriptions", "meta_Software", "meta_Video_Games"]
ds = ds.filter(lambda row: row["filename"] not in main_categories_to_remove) ###
# Keep only the columns we care about
cols_to_keep = ["title", "description", "main_category", "average_rating", "rating_number"]
ds = ds.remove_columns([c for c in ds.column_names if c not in cols_to_keep])
# Add product quality score column
def add_quality_score(batch):
return {
"product_quality_score": [
product_quality_score(r, n)
for r, n in zip(batch["average_rating"], batch["rating_number"])
]
}
ds = ds.map(add_quality_score, batched=True)
# Only keep rows with valid values
def is_valid(v):
"""
Must have valid values in the row. Will be used for filtering.
"""
if v is None:
return False
if isinstance(v, str):
if v.strip() == "":
return False
return True
def keep_row(row):
"""
Keep only the columns with valid data
"""
if is_valid(row.get("title")) and \
is_valid(row.get("description")) and \
is_valid(row.get("main_category")) and \
is_valid(row.get("average_rating")) and \
is_valid(row.get("rating_number")):
return True
return False
ds = ds.filter(keep_row)
return ds.to_pandas()
def load_near_field_from_huggingface():
"""
Load the near-field dataset from HuggingFace.
"""
ds = load_dataset(REPO_ID_NEAR_FIELD, split="train")
return ds.to_pandas()
dataset_near_field = load_near_field_from_huggingface()
def load_far_field_from_huggingface():
"""
Load the far-field dataset from HuggingFace.
"""
ds = load_dataset(REPO_ID_FAR_FIELD, split="train")
return ds.to_pandas()
dataset_far_field = load_far_field_from_huggingface()
def product_score(product_quality_score: float, fuzzy_score: float):
"""
Combine product score and fuzzy score into a single score.
"""
return math.sqrt(product_quality_score * fuzzy_score)
def query_near_field(input: str, top_k: int=1):
"""
Return top_k fuzzy matches for query against dataset titles as a pandas DataFrame.
Always returns exactly top_k rows (if available).
"""
if top_k <= 0:
raise ValueError
n = len(dataset_near_field)
if top_k > n:
print(f"Warning: top_k ({top_k}) is greater than the number of examples in the near-field dataset ({n}). Returning all examples.")
return dataset_near_field.reset_index(drop=True)
matches = process.extract(
input,
dataset_near_field["title"].fillna("").astype(str).tolist(),
scorer=fuzz.token_set_ratio,
limit=n
)
rows = []
for _text, fuzzy_score, idx in matches:
row = dataset_near_field.iloc[idx].to_dict() # pandas way
row["data_source"] = "near_field"
row["fuzzy_score"] = fuzzy_score
product_quality_score = row.get("product_quality_score")
row["score"] = product_score(product_quality_score, fuzzy_score)
rows.append(row)
return (
pd.DataFrame(rows)
.sort_values("score", ascending=False)
.head(top_k)
.reset_index(drop=True)
)
def query_far_field(input: str, top_k: int):
"""
Return top_k random elements from the far_field dataset as a pandas DataFrame.
The input string is ignored.
"""
if top_k < 0:
raise ValueError
n = len(dataset_far_field)
if top_k > n:
print(f"Warning: top_k ({top_k}) is greater than the number of examples in the far-field dataset ({n}). Returning all examples.")
return dataset_far_field.reset_index(drop=True)
# Sample random rows without replacement
sampled = dataset_far_field.sample(n=top_k, random_state=None).reset_index(drop=True)
# Add the rest
sampled["fuzzy_score"] = [
fuzz.token_set_ratio(str(t) if pd.notna(t) else "", input)
for t in sampled.get("title", "")
]
product_quality_scores = sampled.get("product_quality_score")
fuzzy_scores = sampled["fuzzy_score"]
sampled["score"] = [product_score(a, b) for a, b in zip(product_quality_scores, fuzzy_scores)]
sampled["data_source"] = "far_field"
return sampled
def split_near_and_far_fields(total_examples: int, near_far_ratio: float = 0.5):
"""
Split the examples between near and far field.
The ratio represents the examples that will be in the near field to total (near + far).
"""
ratio = near_far_ratio
# Validate ratio
if ratio < 0 or ratio > 1:
raise ValueError("Ratio must be between 0 and 1")
if total_examples < 2:
raise ValueError("Total examples must be at least 2")
near_field_examples = int(total_examples * ratio)
far_field_examples = total_examples - near_field_examples
return near_field_examples, far_field_examples
def query(input: str, total_examples: int, near_far_ratio: float = 0.5):
near_field_examples, far_field_examples = split_near_and_far_fields(total_examples, near_far_ratio)
far_field_result = query_far_field(input, far_field_examples)
#print(far_field_result.head())
near_field_result = query_near_field(input, near_field_examples)
#print(near_field_result.head())
result = pd.concat([near_field_result, far_field_result], ignore_index=True)
return result
# Example
print("Example: ", query("water bottle", total_examples=4, near_far_ratio=0.5))
# Load base + adapter
def lora_load():
model_name = "distilbert-base-uncased" # same base you trained on
tokenizer = AutoTokenizer.from_pretrained(REPO_ID_LORA_GREEN_PATENTS) # , token=token)
base_model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # , token=token)
model = PeftModel.from_pretrained(base_model, REPO_ID_LORA_GREEN_PATENTS) # , token=token)
clf = pipeline("text-classification", model=model, tokenizer=tokenizer)
# Examples of patents and products (fixed commas)
texts = [
"A biodegradable plastic composition derived from renewable corn starch.",
"A new synthetic polymer with enhanced tensile strength.",
"Refreshing Taste: Every bottle of Pure Life Water is enhanced with minerals for a crisp taste that makes drinking water delicious. 12 pack of 16.9 fl oz water bottles.",
"This 18/8 stainless steel water bottle is designed to last a lifetime. Plastic free & Eco friendly water bottles are a healthier option for you & the planet! However, Water in stainless steel tastes different than plastic, make sure your taste buds are ready for this healthy switch"
]
print(clf(texts))
return clf
clf = lora_load()
ex_waterbottle_text = [
"A single use case made with fossil fuels and gasoline.",
"An eco-friendly, sustainable bottle made with biodegradable plastic."
]
print(clf(ex_waterbottle_text))
def sustainability_filter(input: str, total_examples: int, near_far_ratio: float = 0.5):
initial_products = query(input, total_examples, near_far_ratio)
filtered_products = clf(initial_products['description']) # 1 for green patents, 0 otherwise
sustainable_products = filtered_products.filter(lambda x: x['label'] == 'LABEL_1')
return sustainable_products
# ๐ Your system prompt (can be empty)
SYSTEM_PROMPT = """
You are a product analyst. You'll receive product description as input, and extract some product functionality and some product values. Each functionality and value should be keywords only.
Product functionality refers to what the product does: its features, technical capabilities, and performance characteristics. It answers the question: โWhat can this product do?โ
Product value refers to the benefit the customer gains from using the product: how it improves their life, solves their problem, or helps them achieve goals. It answers the question: โWhy does this matter to the customer?โ
Do **not** duplicate an item in both lists. Keep **functionalities** as concrete features. Keep **values** as clear user benefits.
Your Output is a dictionary. Here is the format:
# Your Input:
<product_description>
# Your Output:
{
"values": [
<value1>,
<value2>,
...
],
"functionalities": [
<function1>,
<function2>,
...
]
}
Don't return anything out of the output format.
"""
@dataclass
class LLMConfig:
model_id: str # e.g. "Qwen/Qwen2.5-1.5B-Instruct" or "Qwen/Qwen2.5-3B-Instruct"
system_prompt: str = "" # optional system prompt
max_new_tokens: int = 256
temperature: float = 0.2
top_p: float = 0.9
repetition_penalty: float = 1.05
use_4bit: bool = True # good default for Colab VRAM
def create_llm(
*,
model_id: str,
max_new_tokens: int = 256,
temperature: float = 0.2,
top_p: float = 0.9,
repetition_penalty: float = 1.05,
use_4bit: bool = True
) -> Callable[[str], str]:
"""
Load an off-the-shelf chat LLM and return a callable llm(prompt) -> str.
Pass ONLY the model parameters you want. No size mapping. No llama_cpp.
"""
cfg = LLMConfig(
model_id=model_id,
system_prompt=SYSTEM_PROMPT,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
use_4bit=use_4bit,
)
has_cuda = torch.cuda.is_available()
qconfig: Optional[BitsAndBytesConfig] = None
if has_cuda and cfg.use_4bit:
qconfig = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(cfg.model_id, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
cfg.model_id,
device_map="auto",
torch_dtype=torch.bfloat16 if has_cuda else torch.float32,
quantization_config=qconfig,
).eval()
def _format_messages(user_text: str) -> str:
msgs = []
if cfg.system_prompt:
msgs.append({"role": "system", "content": cfg.system_prompt})
msgs.append({"role": "user", "content": user_text})
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
return tokenizer.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
# Fallback if no chat template is present
sys = f"System: {cfg.system_prompt}\n\n" if cfg.system_prompt else ""
return f"{sys}User: {user_text}\nAssistant:"
@torch.inference_mode()
def llm(prompt: str,
max_new_tokens: int = None,
temperature: float = None,
top_p: float = None,
repetition_penalty: float = None) -> str:
text = _format_messages(prompt)
inputs = tokenizer(text, return_tensors="pt").to(model.device)
out = model.generate(
**inputs,
max_new_tokens=max_new_tokens or cfg.max_new_tokens,
do_sample=(temperature or cfg.temperature) > 0.0,
temperature=temperature or cfg.temperature,
top_p=top_p or cfg.top_p,
repetition_penalty=repetition_penalty or cfg.repetition_penalty,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
gen = out[0][inputs["input_ids"].shape[-1]:]
return tokenizer.decode(gen, skip_special_tokens=True).strip()
print(f"Loaded: {cfg.model_id} | 4-bit: {bool(qconfig)} | Device: {model.device}")
return llm
def response_to_triplets(product_title, response: str):
data = json.loads(response)
#print(data)
triples_list = []
for value in data["values"]:
triples_list.append(f"({product_title}, HAS_VALUE, {value})")
for func in data["functionalities"]:
triples_list.append(f"({product_title}, HAS_FUNCTIONALITY, {func})")
#print(triples_list)
return triples_list
llm = create_llm(
model_id="Qwen/Qwen2.5-1.5B-Instruct",
max_new_tokens=200,
temperature=0.2,
top_p=0.9,
repetition_penalty=1.05,
use_4bit=True, # set False if you have lots of VRAM
)
# Example
if False: # Change to true to check the example
title = """
Surge Protector Power Strip - HANYCONY 8 Outlets 4 USB (2 USB C) Charging Ports, Multi Plug Outlet Extender, 5Ft Braided Extension Cord, Flat Plug Wall Mount Desk Charging Station for Home Office ETL
"""
description = """
3-side design power strip surge protector with 8AC widely outlets and 4 USB (2 USB C) charging ports can power up to 12 devices simultaneously. That makes it easier to make the plugs not covering any outlet, and the 2.2 inchces widely spced in between outlets, larger than standard socket, fit big adapters without blocking each other. The compact design saves more space, suitable for the home, office, and college dorm room essentials
"""
product_description = f"{title}\n{description}"
response = llm(product_description)
print("Example: \n", response)
triplets_list = response_to_triplets(title, response)
print("Example Triplets: \n", triplets_list)
def main(input: str):
all_triplets_list = []
'''
sustainable_results = sustainability_filter(input, total_examples=10, near_far_ratio=0.5)
for i, product in sustainable_results.iterrows():
product_title = product["title"]
response = llm(product_title)
triplets_list = response_to_triplets(product_title, response)
for triplet in triplets_list:
all_triplets_list.append(triplet)
'''
all_triplets_list = [
'(Zojirushi Stainless Steel Mug, HAS_VALUE, temperature regulation)',
'(Zojirushi Stainless Steel Mug, HAS_VALUE, ease of use)',
'(Zojirushi Stainless Steel Mug, HAS_VALUE, portability)'
'(Zojirushi Stainless Steel Mug, HAS_FUNCTIONALITY, vacuum insulation)',
'(Zojirushi Stainless Steel Mug, HAS_FUNCTIONALITY, durability)'
]
return all_triplets_list
def create_graph_from_triplets(triplets):
G = nx.DiGraph()
for triplet in triplets:
line = str(triplet).strip()
if not line:
continue
# Try comma-delimited with max 2 splits
parts = [p.strip(" ()") for p in line.split(",", 2)]
if len(parts) != 3:
# Fallback: pipe-delimited
parts = [p.strip(" ()") for p in line.split("|")]
if len(parts) != 3:
continue # malformed, skip
subject, predicate, obj = parts
if subject and predicate and obj:
G.add_edge(subject, obj, label=predicate)
return G
def nx_to_pyvis(networkx_graph):
pyvis_graph = Network(notebook=True, cdn_resources='remote')
for node in networkx_graph.nodes():
pyvis_graph.add_node(node)
for edge in networkx_graph.edges(data=True):
lbl = edge[2].get("label", "") # โ
safe access
pyvis_graph.add_edge(edge[0], edge[1], label=lbl, title=lbl)
return pyvis_graph
def generateGraph(triples_list):
triplets = [t.strip() for t in triples_list if t.strip()]
graph = create_graph_from_triplets(triplets)
pyvis_network = nx_to_pyvis(graph)
pyvis_network.toggle_hide_edges_on_drag(True)
pyvis_network.toggle_physics(False)
pyvis_network.set_edge_smooth('discrete')
html = pyvis_network.generate_html()
html = html.replace("'", "\"")
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
def pipeline(user_text: str):
try:
triples = main(user_text) or [] # โ
guard against None
# Normalize tuples/lists to "S, R, O" strings (keeps your existing generateGraph)
triples_list = []
for t in triples:
if isinstance(t, (tuple, list)) and len(t) == 3:
triples_list.append(f"{t[0]}, {t[1]}, {t[2]}")
else:
triples_list.append(str(t))
return generateGraph(triples_list)
except Exception:
return "<pre style='white-space: pre-wrap; font-size:12px; color:#b00;'>" + traceback.format_exc() + "</pre>"
demo = gr.Interface(
fn=pipeline,
inputs=gr.Textbox(label="Enter your query / text", value="", lines=6),
outputs=gr.HTML(),
title="Knowledge Graph",
allow_flagging="never",
live=False, # set True if you want it to recompute on each keystroke
css="""
#component-0, #component-1, #component-2 {
display: flex;
justify-content: center;
align-items: center;
flex-direction: column;
}
.gradio-container {
justify-content: center !important;
align-items: center !important;
text-align: center;
}
textarea, iframe {
margin: 0 auto;
display: block;
}
"""
)
demo.launch(quiet=True)
|