Spaces:
Configuration error
Configuration error
File size: 10,698 Bytes
9171a3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import os
import sys
__package__ = "trainer"
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import argparse
import time
import math
import warnings
import torch
import torch.nn.functional as F
import torch.distributed as dist
from contextlib import nullcontext
from torch import optim
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader, DistributedSampler
from transformers import AutoTokenizer, AutoModelForCausalLM
from model.model_minimind import MiniMindConfig, MiniMindForCausalLM
from dataset.lm_dataset import SFTDataset
warnings.filterwarnings('ignore')
def Logger(content):
if not ddp or dist.get_rank() == 0:
print(content)
def get_lr(current_step, total_steps, lr):
return lr / 10 + 0.5 * lr * (1 + math.cos(math.pi * current_step / total_steps))
def distillation_loss_fn(student_logits, teacher_logits, temperature=1.0, reduction='batchmean'):
with torch.no_grad():
teacher_probs = F.softmax(teacher_logits / temperature, hidden_size=-1).detach()
student_log_probs = F.log_softmax(student_logits / temperature, hidden_size=-1)
kl = F.kl_div(
student_log_probs,
teacher_probs,
reduction=reduction
)
return (temperature ** 2) * kl
def train_epoch(epoch, wandb, alpha=0.0, temperature=1.0):
start_time = time.time()
if teacher_model is not None:
teacher_model.eval()
teacher_model.requires_grad_(False)
for step, (X, Y, loss_mask) in enumerate(train_loader):
X = X.to(args.device)
Y = Y.to(args.device)
loss_mask = loss_mask.to(args.device)
lr = get_lr(epoch * iter_per_epoch + step,
args.epochs * iter_per_epoch,
args.learning_rate)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# 前向传播(学生模型)
with ctx:
res = model(X)
student_logits = res.logits
# 教师模型前向传播(只在eval & no_grad)
if teacher_model is not None:
with torch.no_grad():
teacher_logits = teacher_model(X).logits
vocab_size_student = student_logits.size(-1) # N
teacher_logits = teacher_logits[..., :vocab_size_student]
# ========== 计算损失 ==========
# 1) Ground-Truth CE Loss(可选)
loss_mask_flat = loss_mask.view(-1)
ce_loss = F.cross_entropy(
student_logits.view(-1, student_logits.size(-1)),
Y.view(-1),
ignore_index=0,
reduction='none'
)
ce_loss = torch.sum(ce_loss * loss_mask_flat) / loss_mask_flat.sum()
if lm_config_student.use_moe:
ce_loss += res.aux_loss
# 2) Distillation Loss(可选)
if teacher_model is not None:
# 只在有效token位置做蒸馏
distill_loss = distillation_loss_fn(
student_logits.view(-1, student_logits.size(-1))[loss_mask_flat == 1],
teacher_logits.view(-1, teacher_logits.size(-1))[loss_mask_flat == 1],
temperature=temperature
)
else:
distill_loss = torch.tensor(0.0, device=args.device)
# 3) 总损失 = alpha * CE + (1-alpha) * Distill
loss = (alpha * ce_loss + (1 - alpha) * distill_loss) / args.accumulation_steps
scaler.scale(loss).backward()
if (step + 1) % args.accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
if step % args.log_interval == 0:
spend_time = time.time() - start_time
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.4f} lr:{:.12f} epoch_Time:{}min:'.format(
epoch,
args.epochs - 1,
step,
iter_per_epoch,
loss.item(),
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60
)
)
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
wandb.log({
"loss": loss.item(),
"ce_loss": ce_loss.item(),
"distill_loss": distill_loss.item() if teacher_model is not None else 0.0,
"lr": optimizer.param_groups[-1]['lr'],
"last-time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60
})
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
moe_path = '_moe' if lm_config_student.use_moe else ''
ckp = f'{args.save_dir}/full_dist_{lm_config_student.hidden_size}{moe_path}.pth'
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
state_dict = {k: v.half() for k, v in state_dict.items()} # 半精度保存
torch.save(state_dict, ckp)
model.train()
def init_student_model(lm_config):
tokenizer = AutoTokenizer.from_pretrained('../model/')
model = MiniMindForCausalLM(lm_config)
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{args.save_dir}/full_sft_{lm_config.hidden_size}{moe_path}.pth'
state_dict = torch.load(ckp, map_location=args.device)
model.load_state_dict(state_dict, strict=False)
Logger(f'学生模型(LLM)总参数量:{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
model = model.to(args.device)
return model, tokenizer
def init_teacher_model(lm_config):
model = MiniMindForCausalLM(lm_config)
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{args.save_dir}/full_sft_{lm_config.hidden_size}{moe_path}.pth'
state_dict = torch.load(ckp, map_location=args.device)
model.load_state_dict(state_dict, strict=False)
Logger(f'教师模型(LLM)总参数量:{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
model = model.to(args.device)
return model
def init_distributed_mode():
if not ddp: return
global ddp_local_rank, DEVICE
dist.init_process_group(backend="nccl")
ddp_rank = int(os.environ["RANK"])
ddp_local_rank = int(os.environ["LOCAL_RANK"])
ddp_world_size = int(os.environ["WORLD_SIZE"])
DEVICE = f"cuda:{ddp_local_rank}"
torch.cuda.set_device(DEVICE)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="MiniMind Full SFT")
parser.add_argument("--out_dir", type=str, default="../out")
parser.add_argument("--epochs", type=int, default=6)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--learning_rate", type=float, default=5e-6)
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu")
parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--use_wandb", action="store_true")
parser.add_argument("--wandb_project", type=str, default="MiniMind-Full-SFT")
parser.add_argument("--num_workers", type=int, default=1)
parser.add_argument("--ddp", action="store_true")
parser.add_argument("--accumulation_steps", type=int, default=1)
parser.add_argument("--grad_clip", type=float, default=1.0)
parser.add_argument("--warmup_iters", type=int, default=0)
parser.add_argument("--log_interval", type=int, default=100)
parser.add_argument("--save_interval", type=int, default=100)
parser.add_argument("--max_seq_len", type=int, default=512)
parser.add_argument('--local_rank', type=int, default=-1)
parser.add_argument("--data_path", type=str, default="../dataset/sft_xxx.jsonl")
args = parser.parse_args()
# 定义学生模型和教师模型
lm_config_student = MiniMindConfig(hidden_size=512, num_hidden_layers=8)
lm_config_teacher = MiniMindConfig(hidden_size=768, num_hidden_layers=16)
args.save_dir = os.path.join(args.out_dir)
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(args.out_dir, exist_ok=True)
tokens_per_iter = args.batch_size * args.max_seq_len
device_type = "cuda" if "cuda" in args.device else "cpu"
args.wandb_run_name = f"MiniMind-Dist-SFT-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
ddp_local_rank, DEVICE = 0, "cuda:0"
base_seed = 1337
torch.manual_seed(base_seed)
torch.cuda.manual_seed(base_seed)
if ddp:
init_distributed_mode()
args.device = torch.device(DEVICE)
rank = dist.get_rank()
torch.manual_seed(base_seed + rank)
# 同时设置 CUDA 的随机种子
torch.cuda.manual_seed(base_seed + rank)
if args.use_wandb and (not ddp or ddp_local_rank == 0):
import wandb
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
else:
wandb = None
# 初始化学生模型和教师模型
model, tokenizer = init_student_model(lm_config_student)
teacher_model = init_teacher_model(lm_config_teacher)
train_ds = SFTDataset(args.data_path, tokenizer, max_length=args.max_seq_len)
train_sampler = DistributedSampler(train_ds) if ddp else None
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=args.num_workers,
sampler=train_sampler
)
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
if ddp:
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
iter_per_epoch = len(train_loader)
for epoch in range(args.epochs):
train_epoch(epoch, wandb)
|