Spaces:
Runtime error
Runtime error
| # Copyright 2006 Google, Inc. All Rights Reserved. | |
| # Licensed to PSF under a Contributor Agreement. | |
| """ | |
| Python parse tree definitions. | |
| This is a very concrete parse tree; we need to keep every token and | |
| even the comments and whitespace between tokens. | |
| There's also a pattern matching implementation here. | |
| """ | |
| # mypy: allow-untyped-defs, allow-incomplete-defs | |
| from typing import ( | |
| Any, | |
| Dict, | |
| Iterator, | |
| List, | |
| Optional, | |
| Tuple, | |
| TypeVar, | |
| Union, | |
| Set, | |
| Iterable, | |
| ) | |
| from blib2to3.pgen2.grammar import Grammar | |
| __author__ = "Guido van Rossum <guido@python.org>" | |
| import sys | |
| from io import StringIO | |
| HUGE: int = 0x7FFFFFFF # maximum repeat count, default max | |
| _type_reprs: Dict[int, Union[str, int]] = {} | |
| def type_repr(type_num: int) -> Union[str, int]: | |
| global _type_reprs | |
| if not _type_reprs: | |
| from .pygram import python_symbols | |
| # printing tokens is possible but not as useful | |
| # from .pgen2 import token // token.__dict__.items(): | |
| for name in dir(python_symbols): | |
| val = getattr(python_symbols, name) | |
| if type(val) == int: | |
| _type_reprs[val] = name | |
| return _type_reprs.setdefault(type_num, type_num) | |
| _P = TypeVar("_P", bound="Base") | |
| NL = Union["Node", "Leaf"] | |
| Context = Tuple[str, Tuple[int, int]] | |
| RawNode = Tuple[int, Optional[str], Optional[Context], Optional[List[NL]]] | |
| class Base: | |
| """ | |
| Abstract base class for Node and Leaf. | |
| This provides some default functionality and boilerplate using the | |
| template pattern. | |
| A node may be a subnode of at most one parent. | |
| """ | |
| # Default values for instance variables | |
| type: int # int: token number (< 256) or symbol number (>= 256) | |
| parent: Optional["Node"] = None # Parent node pointer, or None | |
| children: List[NL] # List of subnodes | |
| was_changed: bool = False | |
| was_checked: bool = False | |
| def __new__(cls, *args, **kwds): | |
| """Constructor that prevents Base from being instantiated.""" | |
| assert cls is not Base, "Cannot instantiate Base" | |
| return object.__new__(cls) | |
| def __eq__(self, other: Any) -> bool: | |
| """ | |
| Compare two nodes for equality. | |
| This calls the method _eq(). | |
| """ | |
| if self.__class__ is not other.__class__: | |
| return NotImplemented | |
| return self._eq(other) | |
| def prefix(self) -> str: | |
| raise NotImplementedError | |
| def _eq(self: _P, other: _P) -> bool: | |
| """ | |
| Compare two nodes for equality. | |
| This is called by __eq__ and __ne__. It is only called if the two nodes | |
| have the same type. This must be implemented by the concrete subclass. | |
| Nodes should be considered equal if they have the same structure, | |
| ignoring the prefix string and other context information. | |
| """ | |
| raise NotImplementedError | |
| def __deepcopy__(self: _P, memo: Any) -> _P: | |
| return self.clone() | |
| def clone(self: _P) -> _P: | |
| """ | |
| Return a cloned (deep) copy of self. | |
| This must be implemented by the concrete subclass. | |
| """ | |
| raise NotImplementedError | |
| def post_order(self) -> Iterator[NL]: | |
| """ | |
| Return a post-order iterator for the tree. | |
| This must be implemented by the concrete subclass. | |
| """ | |
| raise NotImplementedError | |
| def pre_order(self) -> Iterator[NL]: | |
| """ | |
| Return a pre-order iterator for the tree. | |
| This must be implemented by the concrete subclass. | |
| """ | |
| raise NotImplementedError | |
| def replace(self, new: Union[NL, List[NL]]) -> None: | |
| """Replace this node with a new one in the parent.""" | |
| assert self.parent is not None, str(self) | |
| assert new is not None | |
| if not isinstance(new, list): | |
| new = [new] | |
| l_children = [] | |
| found = False | |
| for ch in self.parent.children: | |
| if ch is self: | |
| assert not found, (self.parent.children, self, new) | |
| if new is not None: | |
| l_children.extend(new) | |
| found = True | |
| else: | |
| l_children.append(ch) | |
| assert found, (self.children, self, new) | |
| self.parent.children = l_children | |
| self.parent.changed() | |
| self.parent.invalidate_sibling_maps() | |
| for x in new: | |
| x.parent = self.parent | |
| self.parent = None | |
| def get_lineno(self) -> Optional[int]: | |
| """Return the line number which generated the invocant node.""" | |
| node = self | |
| while not isinstance(node, Leaf): | |
| if not node.children: | |
| return None | |
| node = node.children[0] | |
| return node.lineno | |
| def changed(self) -> None: | |
| if self.was_changed: | |
| return | |
| if self.parent: | |
| self.parent.changed() | |
| self.was_changed = True | |
| def remove(self) -> Optional[int]: | |
| """ | |
| Remove the node from the tree. Returns the position of the node in its | |
| parent's children before it was removed. | |
| """ | |
| if self.parent: | |
| for i, node in enumerate(self.parent.children): | |
| if node is self: | |
| del self.parent.children[i] | |
| self.parent.changed() | |
| self.parent.invalidate_sibling_maps() | |
| self.parent = None | |
| return i | |
| return None | |
| def next_sibling(self) -> Optional[NL]: | |
| """ | |
| The node immediately following the invocant in their parent's children | |
| list. If the invocant does not have a next sibling, it is None | |
| """ | |
| if self.parent is None: | |
| return None | |
| if self.parent.next_sibling_map is None: | |
| self.parent.update_sibling_maps() | |
| assert self.parent.next_sibling_map is not None | |
| return self.parent.next_sibling_map[id(self)] | |
| def prev_sibling(self) -> Optional[NL]: | |
| """ | |
| The node immediately preceding the invocant in their parent's children | |
| list. If the invocant does not have a previous sibling, it is None. | |
| """ | |
| if self.parent is None: | |
| return None | |
| if self.parent.prev_sibling_map is None: | |
| self.parent.update_sibling_maps() | |
| assert self.parent.prev_sibling_map is not None | |
| return self.parent.prev_sibling_map[id(self)] | |
| def leaves(self) -> Iterator["Leaf"]: | |
| for child in self.children: | |
| yield from child.leaves() | |
| def depth(self) -> int: | |
| if self.parent is None: | |
| return 0 | |
| return 1 + self.parent.depth() | |
| def get_suffix(self) -> str: | |
| """ | |
| Return the string immediately following the invocant node. This is | |
| effectively equivalent to node.next_sibling.prefix | |
| """ | |
| next_sib = self.next_sibling | |
| if next_sib is None: | |
| return "" | |
| prefix = next_sib.prefix | |
| return prefix | |
| class Node(Base): | |
| """Concrete implementation for interior nodes.""" | |
| fixers_applied: Optional[List[Any]] | |
| used_names: Optional[Set[str]] | |
| def __init__( | |
| self, | |
| type: int, | |
| children: List[NL], | |
| context: Optional[Any] = None, | |
| prefix: Optional[str] = None, | |
| fixers_applied: Optional[List[Any]] = None, | |
| ) -> None: | |
| """ | |
| Initializer. | |
| Takes a type constant (a symbol number >= 256), a sequence of | |
| child nodes, and an optional context keyword argument. | |
| As a side effect, the parent pointers of the children are updated. | |
| """ | |
| assert type >= 256, type | |
| self.type = type | |
| self.children = list(children) | |
| for ch in self.children: | |
| assert ch.parent is None, repr(ch) | |
| ch.parent = self | |
| self.invalidate_sibling_maps() | |
| if prefix is not None: | |
| self.prefix = prefix | |
| if fixers_applied: | |
| self.fixers_applied = fixers_applied[:] | |
| else: | |
| self.fixers_applied = None | |
| def __repr__(self) -> str: | |
| """Return a canonical string representation.""" | |
| assert self.type is not None | |
| return "{}({}, {!r})".format( | |
| self.__class__.__name__, | |
| type_repr(self.type), | |
| self.children, | |
| ) | |
| def __str__(self) -> str: | |
| """ | |
| Return a pretty string representation. | |
| This reproduces the input source exactly. | |
| """ | |
| return "".join(map(str, self.children)) | |
| def _eq(self, other: Base) -> bool: | |
| """Compare two nodes for equality.""" | |
| return (self.type, self.children) == (other.type, other.children) | |
| def clone(self) -> "Node": | |
| assert self.type is not None | |
| """Return a cloned (deep) copy of self.""" | |
| return Node( | |
| self.type, | |
| [ch.clone() for ch in self.children], | |
| fixers_applied=self.fixers_applied, | |
| ) | |
| def post_order(self) -> Iterator[NL]: | |
| """Return a post-order iterator for the tree.""" | |
| for child in self.children: | |
| yield from child.post_order() | |
| yield self | |
| def pre_order(self) -> Iterator[NL]: | |
| """Return a pre-order iterator for the tree.""" | |
| yield self | |
| for child in self.children: | |
| yield from child.pre_order() | |
| def prefix(self) -> str: | |
| """ | |
| The whitespace and comments preceding this node in the input. | |
| """ | |
| if not self.children: | |
| return "" | |
| return self.children[0].prefix | |
| def prefix(self, prefix: str) -> None: | |
| if self.children: | |
| self.children[0].prefix = prefix | |
| def set_child(self, i: int, child: NL) -> None: | |
| """ | |
| Equivalent to 'node.children[i] = child'. This method also sets the | |
| child's parent attribute appropriately. | |
| """ | |
| child.parent = self | |
| self.children[i].parent = None | |
| self.children[i] = child | |
| self.changed() | |
| self.invalidate_sibling_maps() | |
| def insert_child(self, i: int, child: NL) -> None: | |
| """ | |
| Equivalent to 'node.children.insert(i, child)'. This method also sets | |
| the child's parent attribute appropriately. | |
| """ | |
| child.parent = self | |
| self.children.insert(i, child) | |
| self.changed() | |
| self.invalidate_sibling_maps() | |
| def append_child(self, child: NL) -> None: | |
| """ | |
| Equivalent to 'node.children.append(child)'. This method also sets the | |
| child's parent attribute appropriately. | |
| """ | |
| child.parent = self | |
| self.children.append(child) | |
| self.changed() | |
| self.invalidate_sibling_maps() | |
| def invalidate_sibling_maps(self) -> None: | |
| self.prev_sibling_map: Optional[Dict[int, Optional[NL]]] = None | |
| self.next_sibling_map: Optional[Dict[int, Optional[NL]]] = None | |
| def update_sibling_maps(self) -> None: | |
| _prev: Dict[int, Optional[NL]] = {} | |
| _next: Dict[int, Optional[NL]] = {} | |
| self.prev_sibling_map = _prev | |
| self.next_sibling_map = _next | |
| previous: Optional[NL] = None | |
| for current in self.children: | |
| _prev[id(current)] = previous | |
| _next[id(previous)] = current | |
| previous = current | |
| _next[id(current)] = None | |
| class Leaf(Base): | |
| """Concrete implementation for leaf nodes.""" | |
| # Default values for instance variables | |
| value: str | |
| fixers_applied: List[Any] | |
| bracket_depth: int | |
| # Changed later in brackets.py | |
| opening_bracket: Optional["Leaf"] = None | |
| used_names: Optional[Set[str]] | |
| _prefix = "" # Whitespace and comments preceding this token in the input | |
| lineno: int = 0 # Line where this token starts in the input | |
| column: int = 0 # Column where this token starts in the input | |
| # If not None, this Leaf is created by converting a block of fmt off/skip | |
| # code, and `fmt_pass_converted_first_leaf` points to the first Leaf in the | |
| # converted code. | |
| fmt_pass_converted_first_leaf: Optional["Leaf"] = None | |
| def __init__( | |
| self, | |
| type: int, | |
| value: str, | |
| context: Optional[Context] = None, | |
| prefix: Optional[str] = None, | |
| fixers_applied: List[Any] = [], | |
| opening_bracket: Optional["Leaf"] = None, | |
| fmt_pass_converted_first_leaf: Optional["Leaf"] = None, | |
| ) -> None: | |
| """ | |
| Initializer. | |
| Takes a type constant (a token number < 256), a string value, and an | |
| optional context keyword argument. | |
| """ | |
| assert 0 <= type < 256, type | |
| if context is not None: | |
| self._prefix, (self.lineno, self.column) = context | |
| self.type = type | |
| self.value = value | |
| if prefix is not None: | |
| self._prefix = prefix | |
| self.fixers_applied: Optional[List[Any]] = fixers_applied[:] | |
| self.children = [] | |
| self.opening_bracket = opening_bracket | |
| self.fmt_pass_converted_first_leaf = fmt_pass_converted_first_leaf | |
| def __repr__(self) -> str: | |
| """Return a canonical string representation.""" | |
| from .pgen2.token import tok_name | |
| assert self.type is not None | |
| return "{}({}, {!r})".format( | |
| self.__class__.__name__, | |
| tok_name.get(self.type, self.type), | |
| self.value, | |
| ) | |
| def __str__(self) -> str: | |
| """ | |
| Return a pretty string representation. | |
| This reproduces the input source exactly. | |
| """ | |
| return self._prefix + str(self.value) | |
| def _eq(self, other: "Leaf") -> bool: | |
| """Compare two nodes for equality.""" | |
| return (self.type, self.value) == (other.type, other.value) | |
| def clone(self) -> "Leaf": | |
| assert self.type is not None | |
| """Return a cloned (deep) copy of self.""" | |
| return Leaf( | |
| self.type, | |
| self.value, | |
| (self.prefix, (self.lineno, self.column)), | |
| fixers_applied=self.fixers_applied, | |
| ) | |
| def leaves(self) -> Iterator["Leaf"]: | |
| yield self | |
| def post_order(self) -> Iterator["Leaf"]: | |
| """Return a post-order iterator for the tree.""" | |
| yield self | |
| def pre_order(self) -> Iterator["Leaf"]: | |
| """Return a pre-order iterator for the tree.""" | |
| yield self | |
| def prefix(self) -> str: | |
| """ | |
| The whitespace and comments preceding this token in the input. | |
| """ | |
| return self._prefix | |
| def prefix(self, prefix: str) -> None: | |
| self.changed() | |
| self._prefix = prefix | |
| def convert(gr: Grammar, raw_node: RawNode) -> NL: | |
| """ | |
| Convert raw node information to a Node or Leaf instance. | |
| This is passed to the parser driver which calls it whenever a reduction of a | |
| grammar rule produces a new complete node, so that the tree is build | |
| strictly bottom-up. | |
| """ | |
| type, value, context, children = raw_node | |
| if children or type in gr.number2symbol: | |
| # If there's exactly one child, return that child instead of | |
| # creating a new node. | |
| assert children is not None | |
| if len(children) == 1: | |
| return children[0] | |
| return Node(type, children, context=context) | |
| else: | |
| return Leaf(type, value or "", context=context) | |
| _Results = Dict[str, NL] | |
| class BasePattern: | |
| """ | |
| A pattern is a tree matching pattern. | |
| It looks for a specific node type (token or symbol), and | |
| optionally for a specific content. | |
| This is an abstract base class. There are three concrete | |
| subclasses: | |
| - LeafPattern matches a single leaf node; | |
| - NodePattern matches a single node (usually non-leaf); | |
| - WildcardPattern matches a sequence of nodes of variable length. | |
| """ | |
| # Defaults for instance variables | |
| type: Optional[int] | |
| type = None # Node type (token if < 256, symbol if >= 256) | |
| content: Any = None # Optional content matching pattern | |
| name: Optional[str] = None # Optional name used to store match in results dict | |
| def __new__(cls, *args, **kwds): | |
| """Constructor that prevents BasePattern from being instantiated.""" | |
| assert cls is not BasePattern, "Cannot instantiate BasePattern" | |
| return object.__new__(cls) | |
| def __repr__(self) -> str: | |
| assert self.type is not None | |
| args = [type_repr(self.type), self.content, self.name] | |
| while args and args[-1] is None: | |
| del args[-1] | |
| return "{}({})".format(self.__class__.__name__, ", ".join(map(repr, args))) | |
| def _submatch(self, node, results=None) -> bool: | |
| raise NotImplementedError | |
| def optimize(self) -> "BasePattern": | |
| """ | |
| A subclass can define this as a hook for optimizations. | |
| Returns either self or another node with the same effect. | |
| """ | |
| return self | |
| def match(self, node: NL, results: Optional[_Results] = None) -> bool: | |
| """ | |
| Does this pattern exactly match a node? | |
| Returns True if it matches, False if not. | |
| If results is not None, it must be a dict which will be | |
| updated with the nodes matching named subpatterns. | |
| Default implementation for non-wildcard patterns. | |
| """ | |
| if self.type is not None and node.type != self.type: | |
| return False | |
| if self.content is not None: | |
| r: Optional[_Results] = None | |
| if results is not None: | |
| r = {} | |
| if not self._submatch(node, r): | |
| return False | |
| if r: | |
| assert results is not None | |
| results.update(r) | |
| if results is not None and self.name: | |
| results[self.name] = node | |
| return True | |
| def match_seq(self, nodes: List[NL], results: Optional[_Results] = None) -> bool: | |
| """ | |
| Does this pattern exactly match a sequence of nodes? | |
| Default implementation for non-wildcard patterns. | |
| """ | |
| if len(nodes) != 1: | |
| return False | |
| return self.match(nodes[0], results) | |
| def generate_matches(self, nodes: List[NL]) -> Iterator[Tuple[int, _Results]]: | |
| """ | |
| Generator yielding all matches for this pattern. | |
| Default implementation for non-wildcard patterns. | |
| """ | |
| r: _Results = {} | |
| if nodes and self.match(nodes[0], r): | |
| yield 1, r | |
| class LeafPattern(BasePattern): | |
| def __init__( | |
| self, | |
| type: Optional[int] = None, | |
| content: Optional[str] = None, | |
| name: Optional[str] = None, | |
| ) -> None: | |
| """ | |
| Initializer. Takes optional type, content, and name. | |
| The type, if given must be a token type (< 256). If not given, | |
| this matches any *leaf* node; the content may still be required. | |
| The content, if given, must be a string. | |
| If a name is given, the matching node is stored in the results | |
| dict under that key. | |
| """ | |
| if type is not None: | |
| assert 0 <= type < 256, type | |
| if content is not None: | |
| assert isinstance(content, str), repr(content) | |
| self.type = type | |
| self.content = content | |
| self.name = name | |
| def match(self, node: NL, results=None) -> bool: | |
| """Override match() to insist on a leaf node.""" | |
| if not isinstance(node, Leaf): | |
| return False | |
| return BasePattern.match(self, node, results) | |
| def _submatch(self, node, results=None): | |
| """ | |
| Match the pattern's content to the node's children. | |
| This assumes the node type matches and self.content is not None. | |
| Returns True if it matches, False if not. | |
| If results is not None, it must be a dict which will be | |
| updated with the nodes matching named subpatterns. | |
| When returning False, the results dict may still be updated. | |
| """ | |
| return self.content == node.value | |
| class NodePattern(BasePattern): | |
| wildcards: bool = False | |
| def __init__( | |
| self, | |
| type: Optional[int] = None, | |
| content: Optional[Iterable[str]] = None, | |
| name: Optional[str] = None, | |
| ) -> None: | |
| """ | |
| Initializer. Takes optional type, content, and name. | |
| The type, if given, must be a symbol type (>= 256). If the | |
| type is None this matches *any* single node (leaf or not), | |
| except if content is not None, in which it only matches | |
| non-leaf nodes that also match the content pattern. | |
| The content, if not None, must be a sequence of Patterns that | |
| must match the node's children exactly. If the content is | |
| given, the type must not be None. | |
| If a name is given, the matching node is stored in the results | |
| dict under that key. | |
| """ | |
| if type is not None: | |
| assert type >= 256, type | |
| if content is not None: | |
| assert not isinstance(content, str), repr(content) | |
| newcontent = list(content) | |
| for i, item in enumerate(newcontent): | |
| assert isinstance(item, BasePattern), (i, item) | |
| # I don't even think this code is used anywhere, but it does cause | |
| # unreachable errors from mypy. This function's signature does look | |
| # odd though *shrug*. | |
| if isinstance(item, WildcardPattern): # type: ignore[unreachable] | |
| self.wildcards = True # type: ignore[unreachable] | |
| self.type = type | |
| self.content = newcontent # TODO: this is unbound when content is None | |
| self.name = name | |
| def _submatch(self, node, results=None) -> bool: | |
| """ | |
| Match the pattern's content to the node's children. | |
| This assumes the node type matches and self.content is not None. | |
| Returns True if it matches, False if not. | |
| If results is not None, it must be a dict which will be | |
| updated with the nodes matching named subpatterns. | |
| When returning False, the results dict may still be updated. | |
| """ | |
| if self.wildcards: | |
| for c, r in generate_matches(self.content, node.children): | |
| if c == len(node.children): | |
| if results is not None: | |
| results.update(r) | |
| return True | |
| return False | |
| if len(self.content) != len(node.children): | |
| return False | |
| for subpattern, child in zip(self.content, node.children): | |
| if not subpattern.match(child, results): | |
| return False | |
| return True | |
| class WildcardPattern(BasePattern): | |
| """ | |
| A wildcard pattern can match zero or more nodes. | |
| This has all the flexibility needed to implement patterns like: | |
| .* .+ .? .{m,n} | |
| (a b c | d e | f) | |
| (...)* (...)+ (...)? (...){m,n} | |
| except it always uses non-greedy matching. | |
| """ | |
| min: int | |
| max: int | |
| def __init__( | |
| self, | |
| content: Optional[str] = None, | |
| min: int = 0, | |
| max: int = HUGE, | |
| name: Optional[str] = None, | |
| ) -> None: | |
| """ | |
| Initializer. | |
| Args: | |
| content: optional sequence of subsequences of patterns; | |
| if absent, matches one node; | |
| if present, each subsequence is an alternative [*] | |
| min: optional minimum number of times to match, default 0 | |
| max: optional maximum number of times to match, default HUGE | |
| name: optional name assigned to this match | |
| [*] Thus, if content is [[a, b, c], [d, e], [f, g, h]] this is | |
| equivalent to (a b c | d e | f g h); if content is None, | |
| this is equivalent to '.' in regular expression terms. | |
| The min and max parameters work as follows: | |
| min=0, max=maxint: .* | |
| min=1, max=maxint: .+ | |
| min=0, max=1: .? | |
| min=1, max=1: . | |
| If content is not None, replace the dot with the parenthesized | |
| list of alternatives, e.g. (a b c | d e | f g h)* | |
| """ | |
| assert 0 <= min <= max <= HUGE, (min, max) | |
| if content is not None: | |
| f = lambda s: tuple(s) | |
| wrapped_content = tuple(map(f, content)) # Protect against alterations | |
| # Check sanity of alternatives | |
| assert len(wrapped_content), repr( | |
| wrapped_content | |
| ) # Can't have zero alternatives | |
| for alt in wrapped_content: | |
| assert len(alt), repr(alt) # Can have empty alternatives | |
| self.content = wrapped_content | |
| self.min = min | |
| self.max = max | |
| self.name = name | |
| def optimize(self) -> Any: | |
| """Optimize certain stacked wildcard patterns.""" | |
| subpattern = None | |
| if ( | |
| self.content is not None | |
| and len(self.content) == 1 | |
| and len(self.content[0]) == 1 | |
| ): | |
| subpattern = self.content[0][0] | |
| if self.min == 1 and self.max == 1: | |
| if self.content is None: | |
| return NodePattern(name=self.name) | |
| if subpattern is not None and self.name == subpattern.name: | |
| return subpattern.optimize() | |
| if ( | |
| self.min <= 1 | |
| and isinstance(subpattern, WildcardPattern) | |
| and subpattern.min <= 1 | |
| and self.name == subpattern.name | |
| ): | |
| return WildcardPattern( | |
| subpattern.content, | |
| self.min * subpattern.min, | |
| self.max * subpattern.max, | |
| subpattern.name, | |
| ) | |
| return self | |
| def match(self, node, results=None) -> bool: | |
| """Does this pattern exactly match a node?""" | |
| return self.match_seq([node], results) | |
| def match_seq(self, nodes, results=None) -> bool: | |
| """Does this pattern exactly match a sequence of nodes?""" | |
| for c, r in self.generate_matches(nodes): | |
| if c == len(nodes): | |
| if results is not None: | |
| results.update(r) | |
| if self.name: | |
| results[self.name] = list(nodes) | |
| return True | |
| return False | |
| def generate_matches(self, nodes) -> Iterator[Tuple[int, _Results]]: | |
| """ | |
| Generator yielding matches for a sequence of nodes. | |
| Args: | |
| nodes: sequence of nodes | |
| Yields: | |
| (count, results) tuples where: | |
| count: the match comprises nodes[:count]; | |
| results: dict containing named submatches. | |
| """ | |
| if self.content is None: | |
| # Shortcut for special case (see __init__.__doc__) | |
| for count in range(self.min, 1 + min(len(nodes), self.max)): | |
| r = {} | |
| if self.name: | |
| r[self.name] = nodes[:count] | |
| yield count, r | |
| elif self.name == "bare_name": | |
| yield self._bare_name_matches(nodes) | |
| else: | |
| # The reason for this is that hitting the recursion limit usually | |
| # results in some ugly messages about how RuntimeErrors are being | |
| # ignored. We only have to do this on CPython, though, because other | |
| # implementations don't have this nasty bug in the first place. | |
| if hasattr(sys, "getrefcount"): | |
| save_stderr = sys.stderr | |
| sys.stderr = StringIO() | |
| try: | |
| for count, r in self._recursive_matches(nodes, 0): | |
| if self.name: | |
| r[self.name] = nodes[:count] | |
| yield count, r | |
| except RuntimeError: | |
| # We fall back to the iterative pattern matching scheme if the recursive | |
| # scheme hits the recursion limit. | |
| for count, r in self._iterative_matches(nodes): | |
| if self.name: | |
| r[self.name] = nodes[:count] | |
| yield count, r | |
| finally: | |
| if hasattr(sys, "getrefcount"): | |
| sys.stderr = save_stderr | |
| def _iterative_matches(self, nodes) -> Iterator[Tuple[int, _Results]]: | |
| """Helper to iteratively yield the matches.""" | |
| nodelen = len(nodes) | |
| if 0 >= self.min: | |
| yield 0, {} | |
| results = [] | |
| # generate matches that use just one alt from self.content | |
| for alt in self.content: | |
| for c, r in generate_matches(alt, nodes): | |
| yield c, r | |
| results.append((c, r)) | |
| # for each match, iterate down the nodes | |
| while results: | |
| new_results = [] | |
| for c0, r0 in results: | |
| # stop if the entire set of nodes has been matched | |
| if c0 < nodelen and c0 <= self.max: | |
| for alt in self.content: | |
| for c1, r1 in generate_matches(alt, nodes[c0:]): | |
| if c1 > 0: | |
| r = {} | |
| r.update(r0) | |
| r.update(r1) | |
| yield c0 + c1, r | |
| new_results.append((c0 + c1, r)) | |
| results = new_results | |
| def _bare_name_matches(self, nodes) -> Tuple[int, _Results]: | |
| """Special optimized matcher for bare_name.""" | |
| count = 0 | |
| r = {} # type: _Results | |
| done = False | |
| max = len(nodes) | |
| while not done and count < max: | |
| done = True | |
| for leaf in self.content: | |
| if leaf[0].match(nodes[count], r): | |
| count += 1 | |
| done = False | |
| break | |
| assert self.name is not None | |
| r[self.name] = nodes[:count] | |
| return count, r | |
| def _recursive_matches(self, nodes, count) -> Iterator[Tuple[int, _Results]]: | |
| """Helper to recursively yield the matches.""" | |
| assert self.content is not None | |
| if count >= self.min: | |
| yield 0, {} | |
| if count < self.max: | |
| for alt in self.content: | |
| for c0, r0 in generate_matches(alt, nodes): | |
| for c1, r1 in self._recursive_matches(nodes[c0:], count + 1): | |
| r = {} | |
| r.update(r0) | |
| r.update(r1) | |
| yield c0 + c1, r | |
| class NegatedPattern(BasePattern): | |
| def __init__(self, content: Optional[BasePattern] = None) -> None: | |
| """ | |
| Initializer. | |
| The argument is either a pattern or None. If it is None, this | |
| only matches an empty sequence (effectively '$' in regex | |
| lingo). If it is not None, this matches whenever the argument | |
| pattern doesn't have any matches. | |
| """ | |
| if content is not None: | |
| assert isinstance(content, BasePattern), repr(content) | |
| self.content = content | |
| def match(self, node, results=None) -> bool: | |
| # We never match a node in its entirety | |
| return False | |
| def match_seq(self, nodes, results=None) -> bool: | |
| # We only match an empty sequence of nodes in its entirety | |
| return len(nodes) == 0 | |
| def generate_matches(self, nodes: List[NL]) -> Iterator[Tuple[int, _Results]]: | |
| if self.content is None: | |
| # Return a match if there is an empty sequence | |
| if len(nodes) == 0: | |
| yield 0, {} | |
| else: | |
| # Return a match if the argument pattern has no matches | |
| for c, r in self.content.generate_matches(nodes): | |
| return | |
| yield 0, {} | |
| def generate_matches( | |
| patterns: List[BasePattern], nodes: List[NL] | |
| ) -> Iterator[Tuple[int, _Results]]: | |
| """ | |
| Generator yielding matches for a sequence of patterns and nodes. | |
| Args: | |
| patterns: a sequence of patterns | |
| nodes: a sequence of nodes | |
| Yields: | |
| (count, results) tuples where: | |
| count: the entire sequence of patterns matches nodes[:count]; | |
| results: dict containing named submatches. | |
| """ | |
| if not patterns: | |
| yield 0, {} | |
| else: | |
| p, rest = patterns[0], patterns[1:] | |
| for c0, r0 in p.generate_matches(nodes): | |
| if not rest: | |
| yield c0, r0 | |
| else: | |
| for c1, r1 in generate_matches(rest, nodes[c0:]): | |
| r = {} | |
| r.update(r0) | |
| r.update(r1) | |
| yield c0 + c1, r | |