Spaces:
Runtime error
Runtime error
| # cython: language_level=3 | |
| # distutils: define_macros=CYTHON_TRACE_NOGIL=1 | |
| # Copyright 2015 Google Inc. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| try: | |
| import cython | |
| COMPILED = cython.compiled | |
| except (AttributeError, ImportError): | |
| # if cython not installed, use mock module with no-op decorators and types | |
| from fontTools.misc import cython | |
| COMPILED = False | |
| import math | |
| from .errors import Error as Cu2QuError, ApproxNotFoundError | |
| __all__ = ["curve_to_quadratic", "curves_to_quadratic"] | |
| MAX_N = 100 | |
| NAN = float("NaN") | |
| def dot(v1, v2): | |
| """Return the dot product of two vectors. | |
| Args: | |
| v1 (complex): First vector. | |
| v2 (complex): Second vector. | |
| Returns: | |
| double: Dot product. | |
| """ | |
| return (v1 * v2.conjugate()).real | |
| def calc_cubic_points(a, b, c, d): | |
| _1 = d | |
| _2 = (c / 3.0) + d | |
| _3 = (b + c) / 3.0 + _2 | |
| _4 = a + d + c + b | |
| return _1, _2, _3, _4 | |
| def calc_cubic_parameters(p0, p1, p2, p3): | |
| c = (p1 - p0) * 3.0 | |
| b = (p2 - p1) * 3.0 - c | |
| d = p0 | |
| a = p3 - d - c - b | |
| return a, b, c, d | |
| def split_cubic_into_n_iter(p0, p1, p2, p3, n): | |
| """Split a cubic Bezier into n equal parts. | |
| Splits the curve into `n` equal parts by curve time. | |
| (t=0..1/n, t=1/n..2/n, ...) | |
| Args: | |
| p0 (complex): Start point of curve. | |
| p1 (complex): First handle of curve. | |
| p2 (complex): Second handle of curve. | |
| p3 (complex): End point of curve. | |
| Returns: | |
| An iterator yielding the control points (four complex values) of the | |
| subcurves. | |
| """ | |
| # Hand-coded special-cases | |
| if n == 2: | |
| return iter(split_cubic_into_two(p0, p1, p2, p3)) | |
| if n == 3: | |
| return iter(split_cubic_into_three(p0, p1, p2, p3)) | |
| if n == 4: | |
| a, b = split_cubic_into_two(p0, p1, p2, p3) | |
| return iter( | |
| split_cubic_into_two(a[0], a[1], a[2], a[3]) | |
| + split_cubic_into_two(b[0], b[1], b[2], b[3]) | |
| ) | |
| if n == 6: | |
| a, b = split_cubic_into_two(p0, p1, p2, p3) | |
| return iter( | |
| split_cubic_into_three(a[0], a[1], a[2], a[3]) | |
| + split_cubic_into_three(b[0], b[1], b[2], b[3]) | |
| ) | |
| return _split_cubic_into_n_gen(p0, p1, p2, p3, n) | |
| def _split_cubic_into_n_gen(p0, p1, p2, p3, n): | |
| a, b, c, d = calc_cubic_parameters(p0, p1, p2, p3) | |
| dt = 1 / n | |
| delta_2 = dt * dt | |
| delta_3 = dt * delta_2 | |
| for i in range(n): | |
| t1 = i * dt | |
| t1_2 = t1 * t1 | |
| # calc new a, b, c and d | |
| a1 = a * delta_3 | |
| b1 = (3 * a * t1 + b) * delta_2 | |
| c1 = (2 * b * t1 + c + 3 * a * t1_2) * dt | |
| d1 = a * t1 * t1_2 + b * t1_2 + c * t1 + d | |
| yield calc_cubic_points(a1, b1, c1, d1) | |
| def split_cubic_into_two(p0, p1, p2, p3): | |
| """Split a cubic Bezier into two equal parts. | |
| Splits the curve into two equal parts at t = 0.5 | |
| Args: | |
| p0 (complex): Start point of curve. | |
| p1 (complex): First handle of curve. | |
| p2 (complex): Second handle of curve. | |
| p3 (complex): End point of curve. | |
| Returns: | |
| tuple: Two cubic Beziers (each expressed as a tuple of four complex | |
| values). | |
| """ | |
| mid = (p0 + 3 * (p1 + p2) + p3) * 0.125 | |
| deriv3 = (p3 + p2 - p1 - p0) * 0.125 | |
| return ( | |
| (p0, (p0 + p1) * 0.5, mid - deriv3, mid), | |
| (mid, mid + deriv3, (p2 + p3) * 0.5, p3), | |
| ) | |
| def split_cubic_into_three(p0, p1, p2, p3): | |
| """Split a cubic Bezier into three equal parts. | |
| Splits the curve into three equal parts at t = 1/3 and t = 2/3 | |
| Args: | |
| p0 (complex): Start point of curve. | |
| p1 (complex): First handle of curve. | |
| p2 (complex): Second handle of curve. | |
| p3 (complex): End point of curve. | |
| Returns: | |
| tuple: Three cubic Beziers (each expressed as a tuple of four complex | |
| values). | |
| """ | |
| mid1 = (8 * p0 + 12 * p1 + 6 * p2 + p3) * (1 / 27) | |
| deriv1 = (p3 + 3 * p2 - 4 * p0) * (1 / 27) | |
| mid2 = (p0 + 6 * p1 + 12 * p2 + 8 * p3) * (1 / 27) | |
| deriv2 = (4 * p3 - 3 * p1 - p0) * (1 / 27) | |
| return ( | |
| (p0, (2 * p0 + p1) / 3.0, mid1 - deriv1, mid1), | |
| (mid1, mid1 + deriv1, mid2 - deriv2, mid2), | |
| (mid2, mid2 + deriv2, (p2 + 2 * p3) / 3.0, p3), | |
| ) | |
| def cubic_approx_control(t, p0, p1, p2, p3): | |
| """Approximate a cubic Bezier using a quadratic one. | |
| Args: | |
| t (double): Position of control point. | |
| p0 (complex): Start point of curve. | |
| p1 (complex): First handle of curve. | |
| p2 (complex): Second handle of curve. | |
| p3 (complex): End point of curve. | |
| Returns: | |
| complex: Location of candidate control point on quadratic curve. | |
| """ | |
| _p1 = p0 + (p1 - p0) * 1.5 | |
| _p2 = p3 + (p2 - p3) * 1.5 | |
| return _p1 + (_p2 - _p1) * t | |
| def calc_intersect(a, b, c, d): | |
| """Calculate the intersection of two lines. | |
| Args: | |
| a (complex): Start point of first line. | |
| b (complex): End point of first line. | |
| c (complex): Start point of second line. | |
| d (complex): End point of second line. | |
| Returns: | |
| complex: Location of intersection if one present, ``complex(NaN,NaN)`` | |
| if no intersection was found. | |
| """ | |
| ab = b - a | |
| cd = d - c | |
| p = ab * 1j | |
| try: | |
| h = dot(p, a - c) / dot(p, cd) | |
| except ZeroDivisionError: | |
| return complex(NAN, NAN) | |
| return c + cd * h | |
| def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance): | |
| """Check if a cubic Bezier lies within a given distance of the origin. | |
| "Origin" means *the* origin (0,0), not the start of the curve. Note that no | |
| checks are made on the start and end positions of the curve; this function | |
| only checks the inside of the curve. | |
| Args: | |
| p0 (complex): Start point of curve. | |
| p1 (complex): First handle of curve. | |
| p2 (complex): Second handle of curve. | |
| p3 (complex): End point of curve. | |
| tolerance (double): Distance from origin. | |
| Returns: | |
| bool: True if the cubic Bezier ``p`` entirely lies within a distance | |
| ``tolerance`` of the origin, False otherwise. | |
| """ | |
| # First check p2 then p1, as p2 has higher error early on. | |
| if abs(p2) <= tolerance and abs(p1) <= tolerance: | |
| return True | |
| # Split. | |
| mid = (p0 + 3 * (p1 + p2) + p3) * 0.125 | |
| if abs(mid) > tolerance: | |
| return False | |
| deriv3 = (p3 + p2 - p1 - p0) * 0.125 | |
| return cubic_farthest_fit_inside( | |
| p0, (p0 + p1) * 0.5, mid - deriv3, mid, tolerance | |
| ) and cubic_farthest_fit_inside(mid, mid + deriv3, (p2 + p3) * 0.5, p3, tolerance) | |
| def cubic_approx_quadratic(cubic, tolerance): | |
| """Approximate a cubic Bezier with a single quadratic within a given tolerance. | |
| Args: | |
| cubic (sequence): Four complex numbers representing control points of | |
| the cubic Bezier curve. | |
| tolerance (double): Permitted deviation from the original curve. | |
| Returns: | |
| Three complex numbers representing control points of the quadratic | |
| curve if it fits within the given tolerance, or ``None`` if no suitable | |
| curve could be calculated. | |
| """ | |
| q1 = calc_intersect(cubic[0], cubic[1], cubic[2], cubic[3]) | |
| if math.isnan(q1.imag): | |
| return None | |
| c0 = cubic[0] | |
| c3 = cubic[3] | |
| c1 = c0 + (q1 - c0) * (2 / 3) | |
| c2 = c3 + (q1 - c3) * (2 / 3) | |
| if not cubic_farthest_fit_inside(0, c1 - cubic[1], c2 - cubic[2], 0, tolerance): | |
| return None | |
| return c0, q1, c3 | |
| def cubic_approx_spline(cubic, n, tolerance, all_quadratic): | |
| """Approximate a cubic Bezier curve with a spline of n quadratics. | |
| Args: | |
| cubic (sequence): Four complex numbers representing control points of | |
| the cubic Bezier curve. | |
| n (int): Number of quadratic Bezier curves in the spline. | |
| tolerance (double): Permitted deviation from the original curve. | |
| Returns: | |
| A list of ``n+2`` complex numbers, representing control points of the | |
| quadratic spline if it fits within the given tolerance, or ``None`` if | |
| no suitable spline could be calculated. | |
| """ | |
| if n == 1: | |
| return cubic_approx_quadratic(cubic, tolerance) | |
| if n == 2 and all_quadratic == False: | |
| return cubic | |
| cubics = split_cubic_into_n_iter(cubic[0], cubic[1], cubic[2], cubic[3], n) | |
| # calculate the spline of quadratics and check errors at the same time. | |
| next_cubic = next(cubics) | |
| next_q1 = cubic_approx_control( | |
| 0, next_cubic[0], next_cubic[1], next_cubic[2], next_cubic[3] | |
| ) | |
| q2 = cubic[0] | |
| d1 = 0j | |
| spline = [cubic[0], next_q1] | |
| for i in range(1, n + 1): | |
| # Current cubic to convert | |
| c0, c1, c2, c3 = next_cubic | |
| # Current quadratic approximation of current cubic | |
| q0 = q2 | |
| q1 = next_q1 | |
| if i < n: | |
| next_cubic = next(cubics) | |
| next_q1 = cubic_approx_control( | |
| i / (n - 1), next_cubic[0], next_cubic[1], next_cubic[2], next_cubic[3] | |
| ) | |
| spline.append(next_q1) | |
| q2 = (q1 + next_q1) * 0.5 | |
| else: | |
| q2 = c3 | |
| # End-point deltas | |
| d0 = d1 | |
| d1 = q2 - c3 | |
| if abs(d1) > tolerance or not cubic_farthest_fit_inside( | |
| d0, | |
| q0 + (q1 - q0) * (2 / 3) - c1, | |
| q2 + (q1 - q2) * (2 / 3) - c2, | |
| d1, | |
| tolerance, | |
| ): | |
| return None | |
| spline.append(cubic[3]) | |
| return spline | |
| def curve_to_quadratic(curve, max_err, all_quadratic=True): | |
| """Approximate a cubic Bezier curve with a spline of n quadratics. | |
| Args: | |
| cubic (sequence): Four 2D tuples representing control points of | |
| the cubic Bezier curve. | |
| max_err (double): Permitted deviation from the original curve. | |
| all_quadratic (bool): If True (default) returned value is a | |
| quadratic spline. If False, it's either a single quadratic | |
| curve or a single cubic curve. | |
| Returns: | |
| If all_quadratic is True: A list of 2D tuples, representing | |
| control points of the quadratic spline if it fits within the | |
| given tolerance, or ``None`` if no suitable spline could be | |
| calculated. | |
| If all_quadratic is False: Either a quadratic curve (if length | |
| of output is 3), or a cubic curve (if length of output is 4). | |
| """ | |
| curve = [complex(*p) for p in curve] | |
| for n in range(1, MAX_N + 1): | |
| spline = cubic_approx_spline(curve, n, max_err, all_quadratic) | |
| if spline is not None: | |
| # done. go home | |
| return [(s.real, s.imag) for s in spline] | |
| raise ApproxNotFoundError(curve) | |
| def curves_to_quadratic(curves, max_errors, all_quadratic=True): | |
| """Return quadratic Bezier splines approximating the input cubic Beziers. | |
| Args: | |
| curves: A sequence of *n* curves, each curve being a sequence of four | |
| 2D tuples. | |
| max_errors: A sequence of *n* floats representing the maximum permissible | |
| deviation from each of the cubic Bezier curves. | |
| all_quadratic (bool): If True (default) returned values are a | |
| quadratic spline. If False, they are either a single quadratic | |
| curve or a single cubic curve. | |
| Example:: | |
| >>> curves_to_quadratic( [ | |
| ... [ (50,50), (100,100), (150,100), (200,50) ], | |
| ... [ (75,50), (120,100), (150,75), (200,60) ] | |
| ... ], [1,1] ) | |
| [[(50.0, 50.0), (75.0, 75.0), (125.0, 91.66666666666666), (175.0, 75.0), (200.0, 50.0)], [(75.0, 50.0), (97.5, 75.0), (135.41666666666666, 82.08333333333333), (175.0, 67.5), (200.0, 60.0)]] | |
| The returned splines have "implied oncurve points" suitable for use in | |
| TrueType ``glif`` outlines - i.e. in the first spline returned above, | |
| the first quadratic segment runs from (50,50) to | |
| ( (75 + 125)/2 , (120 + 91.666..)/2 ) = (100, 83.333...). | |
| Returns: | |
| If all_quadratic is True, a list of splines, each spline being a list | |
| of 2D tuples. | |
| If all_quadratic is False, a list of curves, each curve being a quadratic | |
| (length 3), or cubic (length 4). | |
| Raises: | |
| fontTools.cu2qu.Errors.ApproxNotFoundError: if no suitable approximation | |
| can be found for all curves with the given parameters. | |
| """ | |
| curves = [[complex(*p) for p in curve] for curve in curves] | |
| assert len(max_errors) == len(curves) | |
| l = len(curves) | |
| splines = [None] * l | |
| last_i = i = 0 | |
| n = 1 | |
| while True: | |
| spline = cubic_approx_spline(curves[i], n, max_errors[i], all_quadratic) | |
| if spline is None: | |
| if n == MAX_N: | |
| break | |
| n += 1 | |
| last_i = i | |
| continue | |
| splines[i] = spline | |
| i = (i + 1) % l | |
| if i == last_i: | |
| # done. go home | |
| return [[(s.real, s.imag) for s in spline] for spline in splines] | |
| raise ApproxNotFoundError(curves) | |